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Abstract
The use of periodic boundary conditions for modelling crystal dislocations is

predicated on one’s ability to handle the inevitable image effects. This
communication deals with an often overlooked mathematical subtlety involved
in dealing with the periodic dislocation arrays, that is conditional convergence of
the lattice sums of image fields. By analysing the origin of conditional
convergence and the numerical artefacts associated with it, we establish a
mathematically consistent and numerically efficient procedure for regularization
of the lattice sums and the corresponding image fields. The regularized solutions
are free from the artefacts caused by conditional convergence and regain
periodicity and translational invariance of the periodic supercells. Unlike the
other existing methods, our approach is applicable to general anisotropic
elasticity and arbitrary dislocation arrangements. The capabilities of this
general methodology are demonstrated by application to a variety of situations
encountered in atomistic and continuum modelling of crystal dislocations. The
applications include introduction of dislocations in the periodic supercell for
subsequent atomistic simulations, atomistic calculations of the core energies
and the Peierls stress and continuum dislocation dynamics simulations in three
dimensions.

} 1. Introduction
Solid-state theory owes much of its success to constructive uses of the Bloch’s

theorem (Kittel 1976). The latter applies to systems that are either naturally periodic
or made periodic by replication of the computational supercell throughout space.
The principal advantage of periodic boundary conditions (PBCs) for modelling
crystal defects is that they eliminate surfaces and preserve translational invariance,
the fundamental property of the crystal lattice. However, the advantages of using
PBC often come at a price: instead of a single defect of interest, the periodic closure
of the system introduces an infinite array of defects whose interaction may distort the
computed properties of the defect. The unwanted effects of periodicity can be large
for the defects producing long-range fields, such as electrostatic fields of charged
defects or elastic fields of lattice dislocations. In order to extract properties of indi-
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vidual defects from the properties of periodic arrays, such spurious contributions
should be accurately evaluated.

The effects of PBCs are usually considered by embedding the simulation cell in
an infinite and periodic array of image supercells that are exact replicas of the
primary cell. In this context, the elastic fields of the defect in PBCs can be con-
structed by superimposing the fields produced by the defect in the primary simula-
tion cell and image fields of its periodic replicas. Similarly, the superfluous image
energy can be computed by summing the interaction energies between the primary
and image defects. Unfortunately, in some important cases the image sum is only
conditionally convergent. The Riemann series theorem states that, by regrouping the
terms, it is possible to make such sums converge to an arbitrarily chosen limit
(Whittaker and Watson 1958). A similar problem arises in summing electrostatic
energy in ionic crystals, known as the Madelung summation (de Leeuw 1980, Smith
1981, Borwein et al. 1985). If such is the case, a straightforward summation using
some naı̈ve grouping of terms will fail to provide a definite answer of the image
effect. For the specific case of computing dislocation image energies in PBCs, the
existing techniques have been limited to isotropic elasticity or to special dislocation
arrangements in the periodic supercell (Gulluoglu et al. 1989, Wang and LeSar 1995,
Blase et al. 2000, Ismail-Beigi and Arias 2000). In this paper, we develop a robust
method that is applicable to general anisotropic elasticity and arbitrary dislocation
configurations in periodic supercells. The method follows from the observation that,
when summing the fields produced by an infinite periodic array of sources, condi-
tional convergence and the breaking of periodicity are related. By fixing the latter,
the conditional convergent sum is regularized to its physical solution. We then
establish a connection between the conditional convergence of image energy and
that of the potential field of dislocations. The image energy is regularized by sub-
tracting the non-periodic component of the potential field, which is conveniently
carried out by introducing a set of probing ‘ghost’ dislocations that interact with
image dislocations. We present several key applications selected to demonstrate the
power and applicability of the method to modelling dislocations in PBCs.

We begin with a discussion of the origin of conditional convergence in } 2. In
} 3.1, we show that spurious fields produced by conditionally convergent sums con-
tain low-order polynomials that violate periodicity and that the physical solutions
can be recovered by measuring and subtracting such spurious field components. In
} 3.2, we develop a method for computing the image energy based on the work of
insertion of a dislocation dipole into the periodic supercell (Cai 2001). The solution
provides a correction term that, once subtracted from the lattice sum, makes it
independent of the choice of the summation sequence. A detailed derivation is
given in appendix A and an alternative solution based on the elastic Green’s function
is given in appendix B. In } 4, four applications of the new method are presented.
Firstly, we apply the method to specify initial atomic configurations correctly for
dislocation simulations in the periodic supercells. Secondly, we examine the ener-
getics of dislocations in silicon and find an excellent match between our method’s
predictions and the data from direct atomistic simulations. Based on this agreement,
we extract dislocation core energies from atomistic simulations without any adjus-
table parameters (Cai et al. 2001). Thirdly, we use the new method for designing
optimal supercell geometries that minimize image interactions and make it possible
to compute dislocation Peierls stress with high accuracy. Fourthly, the method is
used to develop an efficient procedure for computing periodic image interactions in
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three-dimensional dislocation dynamics simulations in PBCs (Bulatov et al. 2001).
Finally, } 5 summarizes the discussion.

} 2. The problem of conditional convergence

2.1. Conditional convergence of the elastic fields
Conditional convergence of the lattice sums is a consequence of the long-range

character of the elastic fields of dislocations. Consider a dislocation dipole in a
simulation supercell with periodic vectors c1, c2 and c3, as shown in figure 1. Two
dislocation lines, with Burgers vectors b and �b, are parallel to c3 and separated by
a. Let us construct the stress field in this PBC cell by summing the individual con-
tributions from the image dipoles in the periodic lattice:

�sumi j ðrÞ �
X
R

�dipolei j ðr� RÞ; ð1Þ

where �dipolei j ðr� RÞ is the stress field of a dipole at position R with respect to the
primary dipole. The summation runs over two-dimensional lattice R ¼ n1c1 þ n2c2
(n1 and n2 are integers) specifying positions of the image dipoles with respect to the
primary dipole.

The stress field of a straight dislocation (Hirth and Lothe 1982, p. 59) behaves as
R�1 at large R (in two dimensions) while the stress field of a dislocation dipole decays
as R�2. Therefore, the sum of stress fields by their absolute values at any point r
diverges logarithmically:X

R

j�dipolei j ðr� RÞj /
ð1

dR 2pR
1

R2
/
ð1

dR
1

R
� 1 : ð2Þ

This means that the summation in equation (1) is not absolutely convergent. On the
other hand, in practice the sum in equation (1) does converge, owing to partial
cancellation of terms with the opposite signs. However, because this sum is not
absolutely convergent, as was shown by Riemann (see Whittaker and Watson
(1958)), one can make it converge conditionally to virtually any value, by selecting
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Figure 1. A periodic simulation cell (solid rectangle) of box vectors c1, c2, c3 (out of plane),
containing a dislocation dipole under PBCs. The two dislocations have Burgers vector
b and are separated by a. Image dipoles are illustrated in grey and ‘ghost’ disloca-
tions introduced to facilitate image energy calculation are plotted in white.



the order in which the terms are summed or by choosing the limit of truncation. For
example, summation of the interaction terms by expanding concentric circles con-
verges to a different limit than a summation by expanding rectangles. This behaviour
of conditional convergence makes the straightforward (naı̈ve) summation invalid for
providing a definite solution for the true stress field in the periodic cell.

Obviously the same problem occurs in displacement field since its derivative,
strain, is related to stress by the elastic constants. Another case worth mentioning
is dislocation dynamics simulations in three dimensions where dislocations are dis-
cretized into short line segments interacting with each other through their stress
fields (Devincre and Kubin 1997, Zbib et al. 1998, Schwarz 1999, Ghoniem et al.
2000). Since the stress of a short dislocation segment behaves as R�2, the infinite sum
of stress contributions from its image segments, now in three dimensions, is con-
ditionally convergent again. In order to take full advantage of PBCs for dislocation
simulations, these and other similar difficulties have to be resolved.

2.2. Conditional convergence of the interaction energy
Let us consider an atomistic configuration of dislocation dipole in a periodic

supercell (figure 1). If the initial atomic configuration is chosen appropriately (see
} 4.1), subsequent relaxation brings the system’s energy to a local minimum. Let us
define Eatm as the energy in excess of the energy of a perfect lattice with the same
number of atoms. The problem of interest is to extract dislocation core energy from
the ‘raw’ simulation data Eatm that is sure to contain yet unknown contribution from
the image interactions.

In the limit of c1=a; c2=a ! 1, Eatm must converge to a physical quantity
Edipole—the energy of an isolated dislocation dipole in an infinite lattice. However,
in practice, especially because of the need to limit the number of atoms in ab initio
calculations, the cell dimensions c1 and c2 are comparable with a. Then, it becomes
necessary to account for an additional energy of the periodic image interactions Eimg,
as in

Eatm ¼ Edipole þ Eimg: ð3Þ

In turn, the dipole energy itself can be separated into two contributions: one asso-
ciated with the core regions, and the other associated with the long range elastic
fields of the two dislocations:

Edipole ¼ 2EcoreðrcÞ þ EprmðrcÞ; ð4Þ

where EcoreðrcÞ is the dislocation core energy, EprmðrcÞ is the elastic energy of the
dislocation dipole and rc is a cut-off radius introduced to avoid the singularity of the
elastic energy in the core. For example, elastic energy (per unit length) of a dipole of
two parallel screw dislocations in an infinite isotropic solid with shear modulus � is

EprmðrcÞ ¼
�b2

2p
ln

�
a

rc

�
: ð5Þ

Here, because of the arbitrariness of rc, Ecore is not a physical quantity in the sense
that it cannot be defined or measured independently. To make this parameter mean-
ingful, a reference radius rc must be specified. Given this partitioning, Eatm can be
written as follows:

Eatm ¼ 2EcoreðrcÞ þ EprmðrcÞ þ Eimg:
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Here, EprmðrcÞ and Eimg are two parts of elastic energy, one of which (Eimg) is due to
the image interactions. Thus, the effort of extracting Ecore from Eatm reduces to
calculating Eimg.

Intuitively, one writes Eimg as a sum of interaction energies between the (primary)
dislocation dipole and its periodic images

E 0
img ¼

1

2

X
R

0 EddðRÞ; ð6Þ

where EddðRÞ is the interaction energy of two dipoles separated by vector R and the
summation runs over two-dimensional lattice R ¼ n1c1 þ n2c2 (n1 and n2 are
integers) specifying positions of the image dipoles with respect to the primary dipole.
The factor 1

2
appears because only half the interaction energy term is ascribed to the

primary cell whereas the other half belongs to the image cell. The prime in
P0 means

that the singular term (n1 ¼ n2 ¼ 0) is excluded from summation and the prime in
E 0
img symbolizes that the image energy is not yet well defined owing to the conditional

convergence of the lattice sum.
Let us consider, as an example, a screw dislocation dipole in an isotropic solid so

that the dipole–dipole interaction term becomes

EddðRÞ ¼
�b2

2p
ln

�
jRþ ajEjR� aj

jRj2
�

ð7Þ

� ��b2

2p
a2

R2
cos ð2�Þ

/ R�2 for R � a; ð8Þ

where � ¼ arccos ½ðaERÞ=aR�. Since jEddðRÞj / R�2 for all dislocation dipoles, the
sum of the absolute values of such interaction terms diverges logarithmically, similar
to the stress fields in } 2.1. This means that the summation in equation (6) is not
absolutely convergent. On the other hand, as was observed in all previous
communications (Arias and Joannopoulos 1994, Hansen et al. 1995, Lehto and
Heggie 1999, Blase et al. 2000), the sum in equation (6) does converge, evidently
owing to a partial cancellation of terms with the opposite signs. However, this
behaviour of conditional convergence makes it virtually impossible to obtain the
true value of Eimg from a straightforward (naı̈ve) summation in equation (6). The
earlier reports (Arias and Joannopoulos 1994, Hansen et al. 1995) dealing with the
dislocation image sums in PBCs ignored the issue of conditional convergence and did
not specify the order of summation. The results of such calculations are arbitrary
and the reported values of the core energies are nearly certainly incorrect.

} 3. Regularization of the conditionally convergent sums

3.1. Regularization of elastic fields
A physically meaningful solution for the total elastic field of a periodic array of

field sources should be periodic itself with the exact periodicity of the supercell. It
turns out that the naı̈ve superposition of image terms not only is conditionally
convergent but also produces fields that are, as a rule, non-periodic. This suggests
that the non-uniqueness of the conditionally convergent sums and the observed
spurious breaking of translational periodicity are closely related and, if one issue
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is resolved, another will be corrected too. Generally speaking, if the field from a
single source behaves as 1=rm at large r, then the lattice sums of the derivatives of
certain order and above should be absolutely convergent. Conversely, the condition-
ally convergent part of the field should be representable by a low-order polynomial
in r, such as a constant (e.g. �0) or a linear term (e.g. �0 þ gEr), depending on m and
the lattice dimensionality.

A simple recipe to reconstruct the fields from a conditionally convergent series is
first to go ahead and to compute a lattice sum of the field sources following some
arbitrarily selected grouping of terms. The second step is to measure and subtract the
spurious part of the field that appears owing to conditional convergence. In this
section, we describe this approach using the potential energy field of dislocations as
an example. The solution given here will be utilized in the following } for regulariza-
tion of the image energy. A similar method is used in } 4.1 to correct dislocation
displacement fields, which is useful for setting up atomistic simulations of disloca-
tions in PBCs. In } 4.4, we apply the method to account for the image stress fields in
three-dimensional dislocation dynamics simulations in PBCs.

In this }we consider, as an example, a scalar potential field �ðrÞ defined as the
interaction energy (per unit length) between the periodic dipole array and a test
dislocation b at position r. Similar to the stress field in equation (1), �ðrÞ is a super-
position of the potential fields of individual dipoles. Consider, as an example, a
dipole of screw dislocations in an elastically isotropic solid located at a=2 and
�a=2 in a periodic supercell. The potential field of the image dipoles is

�ðrÞ ¼
X
R

�b2

2p
ln

�
jr� ðR� a=2Þj
jr� ðRþ a=2Þj

�
: ð9Þ

The individual terms in equation (9) are proportional to 1=R at large R; hence their
sum �ðrÞ is not absolutely convergent. Similarly, the sum of the first spatial deriva-
tives of the field contributions oi�ðrÞ (i ¼ 1; 2) is conditionally convergent since the
individual terms are proportional to 1=R2. Taking it one step further, the second
derivatives oioj�ðrÞ (i; j ¼ 1; 2) are proportional to 1=R3 and their sum will converge
absolutely to the same limit regardless of the order of summation.

We now prove that an absolutely convergent sum of fields from a periodic array
of sources converges to a field hðrÞ (e.g. oioj�ðrÞ) that is also periodic. Consider a
partial sum over a large summation domain O of an arbitrary shape, say, a circle as
in figure 2. Assume also that O1 is the same as O, only shifted by c1. By periodicity,
the partial lattice sum hOðrÞ over domain O is identical with the partial lattice sum
hO1ðrþ c1Þ over the shifted domain O1. What we need to prove, however, is that
these two partial sums converge to the same limit when summed over the same
domain. Consider a common region O0 that lies in the intersection of O and O1.
Noting that an absolutely convergent sum converges to the same limit no matter how
it is truncated, we have

lim
O0!1

½hOðrÞ� ¼ lim
O!1

½hOðrÞ� ¼ hðrÞ; ð10Þ

lim
O0!1

½hO1ðrþ c1Þ� ¼ lim
O1!1

½hO1ðrþ c1Þ� ¼ hðrþ c1Þ: ð11Þ

Since hOðrÞ � hO1ðrþ c1Þ, we prove that hðrÞ ¼ hðrþ c1Þ and, similarly,
hðrÞ ¼ hðrþ c2Þ.
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For the field �ðrÞ that is not absolutely convergent and, hence, may not be
periodic, we define

�ðrÞ ¼ �PBCðrÞ þ��ðrÞ; ð12Þ

where �PBCðrÞ is the invariant periodic component and ��ðrÞ is the non-periodic
spurious part of the field that may be different for different summation procedures.
Given that oioj�ðrÞ is absolutely convergent and, hence, periodic, the non-periodic
part of the conditionally convergent field is, by integration,

��ðrÞ ¼ gErþ �0; ð13Þ

where �0 is an integration constant and g is a constant vector. These two terms are
artefacts of the conditional convergence and should be subtracted in order to obtain
a unique periodic solution for the potential field.

Because �PBCðrÞ ¼ �PBCðrþ c1;2Þ, to measure the slope g of the spurious field
one can use, for example,

gEc1 ¼ �ðr1 þ c1Þ � �ðr1Þ;

gEc2 ¼ �ðr2 þ c2Þ � �ðr2Þ;
ð14Þ

for arbitrary r1 and r2. In other words, the average slope g of the potential field can
simply be ‘measured’ by comparing field values in two pairs of points separated by
lattice repeat vectors. In two dimensions, two measurements are sufficient to
determine g. The constant �0 is immaterial and can be eliminated by redefining
the reference point of the potential energy. The desired periodic solution is then
recovered by subtracting gEr from the non-periodic, conditionally convergent field
�ðrÞ.
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Figure 2. To prove that an absolutely convergent sum of fields from a periodic array of
sources is periodic, we consider two field points r and rþ c1, where c1 is a lattice repeat
vector. Here O is an arbitrary but large summation domain and O1 is obtained by
shifting O by c1. O0 lies in the intersection of O and O1.



3.2. Regularization of the image energy
Now let us consider the image energy as introduced in } 2.2. The arbitrariness of

E 0
img in equation (6) associated with conditional convergence is a numerical artefact.

This follows from the fact that, for a given size of the dipole, both Eatm and Edipole in
equation (3) are two well-defined quantities. The first of these, Eatm, can be
‘measured’ directly in an atomistic calculation for any given size and shape of the
supercell. The second quantity, Edipole, can be obtained without any recourse to the
lattice sums, as a limit of Eatm computed in increasingly large supercells. Hence, their
difference, Eimg, should be a well-defined quantity too. Several methods have been
proposed so far to circumvent the conditional convergence problem by regulariza-
tion of the image sums. Edge dislocations, in particular, can be grouped into infinite
walls whose interaction is short-ranged and thus absolutely convergent (Wang and
LeSar 1995). Alternatively, a Ewald-like method has been used for periodic arrays of
screw dislocations (Ismail-Beigi and Arias 2000). So far, applicability of these two
methods has been limited by the common assumption of isotropic elasticity. The
recipe of grouping dislocations into quadrupoles can be used in conjunction with
anisotropic elasticity, but it requires special dislocation arrangements (Bigger et al.
1992, Wolf 1992, V. V. Bulatov 1998, unpublished). A general solution is needed that
is sufficiently robust to handle anisotropic elasticity as well as arbitrary dislocation
configurations.

In this section, we describe a solution that meets these requirements and some
ideas used for its derivation. Only a brief outline of the derivation is presented here
while the details are given in appendix A.

Firstly, by considering the reversible work of introducing a dislocation dipole in
a periodic elastic solid, we find that the total elastic energy of a dislocation dipole
under PBCs can be expressed in terms of the stress field �i jðrÞ as (see }A.1),

Eel ¼ � 1
2

ð
dAjbi�

0
i jðrÞ þ 1

2
S�2V ; ð15Þ

where � � h�ðrÞiV is the average stress, and �0ðrÞ � �ðrÞ � � is the variation in the
stress field with zero average.

In an attempt to relate equation (15) to the naı̈ve image sum in equation (6), we
write �0ðrÞ as

�0i jðrÞ ¼ �sumi j ðrÞ � �erri j ; ð16Þ

where �sumi j ðrÞ is defined in equation (1) and �erri j � �sumi j ðrÞ
� �

V
is its volume average.

As shown in }A.1, assuming that the average stress � in the supercell is relaxed to
zero, this leads to an expression for the image energy that includes the naı̈ve image
interaction sum plus a correction term:

Eimg ¼ 1
2

X
R

0 EddðRÞ þ 1
2
Ajbi�

err
i j : ð17Þ

The �erri j term is the spurious volume average of the stress field in the supercell which
is also the derivative of the spurious non-periodic part of the potential field com-
puted through equations (13) and (14) in } 3.1. By subtracting this term, periodicity
of the potential field as well as the absolute convergence of the image energy are
restored. Operationally, this is done by inserting ‘ghost’ dislocations at the cell
boundaries and rewriting the correction term as the sum of interaction energies
between ‘ghost’ and image dislocations. As shown in figure 1, it is sufficient to insert
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four ‘ghost’ dislocations �b, ��b and 	b and �	b, so that �b, ��b are separated
by c1, 	b and �	b are separated by c2, and � and 	 are such that a ¼ �c1 þ 	c2.
Define EdgðRÞ as the interaction energy between an image dipole offset from the
primary dipole by R with the ‘ghost’ dislocations. The resulting corrected, or
regularized, sum is

Eimg ¼ 1
2

X
R

0 EddðRÞ � 1
2

X
R

EdgðRÞ ð18Þ

¼ 1
2

X
R

0 EddðRÞ � EdgðRÞ
� 	

� 1
2
EdgðR ¼ 0Þ; ð19Þ

where the sum
P

includes R ¼ 0 (primary dipole) but
P0 does not. Because the

dipole moments of the ‘ghost’ dislocations and the primary dislocations are identical,
the dipole–dipole interactions cancel and EddðRÞ � EdgðRÞ represents a dipole–quad-
rupole interaction that decreases as R�3 with increasing R. Hence, the sum in
equation (19) is absolutely convergent. This approach is similar to the fictitious
charges introduced by Kudin and Scuseria (1998) to cancel the dipole corrections
in the periodic lattice of electric dipoles. The validity of this solution is verified by
comparing it with direct atomistic simulations in } 4.2. The approach is also used to
quantify and minimize the artificial image forces associated with dislocations in
PBCs and to calculate dislocation Peierls stress in } 4.3.

} 4. Applications

4.1. Atomistic modelling: introducing dislocations in the supercell
In this section, we consider the basic task of creating initial configurations for

atomistic simulations of dislocation dipoles. At a first glance, there is no issue here
since atomistic simulations of dislocations in PBCs have become commonplace.
However, as discussed below, even in this relatively simple situation the problem
of conditional convergence does exist. In some cases, subsequent relaxation of the
initial atomic configuration takes care of the problem and eliminates the artefacts
associated with the conditionally convergent lattice sums. However, the very same
artefacts can be responsible for non-physical effects at the supercell boundaries that
may persist through the subsequent atomistic simulations and could lead to
uncontrollable errors if left unnoticed. This section discussed the nature of condi-
tional convergence for the case of displacement fields in PBCs and describes a simple
and efficient procedure for eliminating spurious misfit that is often created by intro-
ducing dislocations in the periodic supercells.

Let us consider a screw dislocation in the isotropic solid as an example.
Assuming that it runs along z through the origin, its displacement field is

uzðx; yÞ ¼ b
�

2p
; ð20Þ

where � is the angle between the position vector of the field point and a reference
direction. Choice of the reference direction is arbitrary and amounts to fixing a
mathematical cut plane across which the displacement field experiences a discontin-
uous jump by b. For example, choosing � ¼ arctan ðy=xÞ corresponds to a cut along
the �x axis. Figure 3 (a) shows the displacement field udipolez ðx; yÞ of a dislocation
dipole with Burgers vector magnitude b positioned at x ¼ 0:5, y ¼ 0 and �b at
x ¼ �0:5, y ¼ 0, in a domain x 2 ½�1; 1�, y 2 ½�0:5; 0:5�. Clearly, udipolez ðx; yÞ is not
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periodic and may not be a good initial configuration for subsequent atomistic simu-
lations.

In an attempt to generate the displacement field of a dislocation dipole that
would satisfy the periodic boundary conditions, we superimpose the displacement
fields of a periodic array of dipoles:
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Figure 3. Constructing the displacement fields uzðx; yÞ of a screw dislocation dipole in PBCs
by superimposing the displacement fields of (a) primary and (b) image dipoles. The
superposition of (a) and (b) produces (c) a field that is not fully periodic. Only after (d)
the error term is measured and subtracted, is (e) the expected periodicity restored.



usumðrÞ ¼
X
R

udipoleðr� RÞ: ð21Þ

Figure 3 (c) shows the result usumðrÞ of superposition of the displacement fields of
dislocation dipoles within the rectangular box jxj < 10, jyj < 5. Figure 3 (b) shows
uimgðrÞ � usumðrÞ � udipoleðrÞ, that is the displacement field generated by the image
dipoles only, excluding the singular field of the primary dipole. We see that neither of
the two fields is periodic.

Following the general discussion in } 3, we trace the non-periodic component of
the displacement field to the conditional convergence of the sum of the displacement
fields of individual dipoles. That the two issues, conditional convergence and break-
ing of periodicity, are directly related is again confirmed by the fact that a unique
solution for true displacement field can be obtained in two operationally different
ways: firstly by direct regularization of the sum (equation (22), by for example
introducing ‘ghost’ dislocations around each image dipole, as in } 3.2) and making
it absolutely convergent; secondly, by summing a conditionally convergent sum and
then subtracting the spurious components of the field thus obtained. Here, we choose
the latter option, which we find is somewhat simpler to implement.

Considering that the displacement field of a dislocation dipole behaves as 1=r
with increasing r, lattice sums of the second derivatives of the displacement field
should be absolutely convergent. Hence, the conditional convergence can result, at
worst, in a spurious linear term that depends on the order of summation or, for finite
sums, on exactly how the summation is truncated:

usumðrÞ ¼ uPBCðrÞ þ dErþ u0: ð22Þ

Here, uPBCðrÞ is periodic, d is a constant tensor and u0 is a constant translation that
can be eliminated by an appropriate choice of the coordinate origin. The linear
component of the spurious field uerr � dEr can be readily evaluated by measuring
the field at the cell corners. Depending on how many terms are summed to construct
usum, this term can be arbitrarily large and may manifest itself in artificial stacking
faults due to displacement mismatch across the cell boundaries. To avoid such a
possibility it is important to subtract this term. Figure 3 (d) shows the spurious linear
term uerr while figure 3 (e) shows the displacement field after subtracting uerr. The
resulting regularized field is fully periodic. This simple procedure is used throughout
this paper to create initial structures for the atomistic simulations of dislocation
dipoles.

In the above approach, it is important that the same set of image dipoles is used
to compute the displacement field at all points within the primary cell. Alternatively,
one can devise a slightly different summation procedure in which only the dipoles are
summed whose centres fall into, say, a circle of fixed radius drawn around a given
field point. Moving around in the primary supercell, the set of dipoles entering the
partial sum will change when the boundary of the summation circle crosses the
centre of a dipole. As a result, the sets of image dipoles contributing to each field
point can be different. Interestingly, in this latter scheme, one always obtains a
periodic field. Furthermore, numerical calculations show that, in the limit of large
cut-off radius and without any further correction, this method usually generates a
field that is almost identical with that obtained from the regularization procedure
above. Similar observations have been reported by Wolf et al. (1999) in the context
of electrostatic interactions. However, despite its simplicity, we cannot recommend

Periodic image effects in dislocation modelling 549



this method with conviction, since it is difficult to prove that it converges to the
absolutely convergent physical solution. In fact, the field obtained in this way always
contains discontinuities caused by sudden changes in the number of contributing
image dipoles on going from one field point to another. At the same time, the
regularization method discussed above always produces a smooth field that is also
proven to be absolutely convergent.

4.2. Atomistic modelling: the core energy
In this section, we check the validity of equation (19) by comparing the energies

of dislocation dipoles computed two ways: firstly, using a fully atomistic description
of dislocations in PBCs and then using the linear elasticity solution developed in
appendix A. We establish that the difference between the two energies does not
depend on the supercell geometry, thus providing a consistent and physically mean-
ingful way for extraction of the dislocation core energy through equation (6).

Figure 4 shows a screw dislocation dipole on the shuffle-set plane (Hirth and
Lothe 1982, p. 376) in a periodic supercell with repeat vectors c1 ¼ 4½112�,
c2 ¼ 3½111� and c3 ¼ ½110�. In this supercell, two dislocations are separated by
a ¼ c1=2. To compute the interatomic forces we use the Stillinger–Weber (SW)
(1985) potential model modified by Balamane et al. (1992). The elastic constants
for the modified SW potential are C11 ¼ 161:6GPa, C12 ¼ 81:6GPa and
C44 ¼ 60:3GPa. A dislocation dipole is initially introduced using the regularized
elastic solution for the displacement field produced by a screw dislocation dipole
in PBCs (see } 4.1 for details). Then, the forces between the atoms are relaxed using a
conjugate gradient algorithm. In the relaxed configuration the atoms with local
energies higher than the bulk cohesive energy by 0:08 eV are shown as full circles,
to highlight the dislocation cores. Earlier, Koizumi et al. (2000) found that the SW
model predicts two alternative core structures for the shuffle-set screw dislocations
that are very close in energy. These two types were termed A and B. Both disloca-
tions in figure 4 (a) have cores of type A centring on the six-atom rings. On the other
hand, two dislocations in figure 4 (b) have cores of type B centring on the vertical
bonds. Koizumi et al. (2000) reported that, of the two alternative core structures,
core B has slightly lower energy in the SW model of silicon. We reproduce that result
(see below) but note that an even earlier ab initio study (Arias and Joannopoulos
1994) reported core A as the ground state of the shuffle screw dislocation. We are
currently exploring this issue using an ab initio framework and shall report our
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Figure 4. Atomic cell used for simulations of dislocations in silicon based on the SW poten-
tial (Balamane et al. 1992) with c1 ¼ 4½11�22�, c2 ¼ 3½111� and c3 ¼ ½1�110�. The cell con-
tains a shuffle-set screw dislocation dipole with a ¼ c1=2. Dislocations core structures
are of type A in (a) and type B in (b).



findings elsewhere. Here we focus solely on the comparison between the atomistic
and elastic predictions for the energy of dislocation dipoles in PBCs.

First, we fix c2 and c3 but vary c1, keeping a ¼ c1=2, to examine the agreement
or lack thereof between the atomistic Eatm and elastic predictions for the dipole
energies in PBCs. Figure 5 (a) shows that Eatm varies linearly with c1 with the
same slope for both types of dislocation core: type A and type B. The core energy
difference computed from these data is

EA
core � EB

core ¼ 0:0375 eV A
� �1

: ð23Þ

We then calculate elastic energies Eel for the same cell geometries. For consistency,
we use the cubic elastic constants computed for the Balamane et al. (1992) version of
the SW potential and employ the formula developed in appendix C for the disloca-
tion interaction energy in a generally anisotropic solid. The results are plotted in
figure 5 as open diamonds. The elastic energies also fall on to a straight line with a
slope that agrees with the atomistic data to within 0:5%. This agreement between
atomistic and elasticity results is significant, because there are no adjustable para-
meters in either calculation, in contrast to a previous study (Arias and Joannopoulos
1994). By subtracting Eel from Eatm, we obtain the core energies of the

two structures: EA
core ¼ 0:565 0:001 eV A

� �1
, and EB

core ¼ 0:527 0:001 eV A
� �1

at

rc ¼ b ¼ 3:84 A
�
. The core energies thus obtained are manifestly independent of c1.

Having just obtained the core energies from the first series of supercell calcula-
tions, we confirm our results in a second series in which c1 is fixed at 4½112� but c2
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Figure 5. (a) Atomistic and linear elastic energies of the dislocation dipole computed in PBCs

as functions of the supercell shape: (~), atomistic energies EA
atm for core A; (*),

atomistic energies EB
atm for core B; (^) elastic energy Eaniso

el computed using anisotro-

pic theory; (&), elastic energy Eiso
el computed by the isotropic elasticity; (——),

EB
atm � Eaniso

el ; (- - - - -), EB
atm � Eiso

el . (b) The total excess energy computed atomistically

for c1 ¼ 3½11�22� and different c2: (~), EA
atm for core A, (*), EB

atm for core B; (——),

corresponding values obtained by summing the regularized anisotropic elastic energy

with the core energies extracted from the data shown in (a).



varies from 3 to 6½111�. Figure 5 (b) directly compares the atomistic data from this
new series (open triangles and open circles) with the sum of the anisotropic elastic
interactions plus 2Ecore obtained from the data shown in figure 5 (a) (solid lines). The
agreement confirms that the use of the regularized lattice sums combined with a fully
anisotropic treatment of elastic interactions provides a very reliable way to extract
core energies from atomistic calculations. We notice that the agreement for type A
dislocation is slightly better than that for type B, possibly owing to the compactness
of core A.

An earlier calculation using an ab initio approach and the isotropic elasticity

theory (Arias and Joannopoulos 1994) reported that EA
core ¼ 0:56 0:21 eV A

� �1
for

the same rc ¼ b ¼ 3:84 A
�
. Although the first-principles methods are generally more

accurate than empirical potentials for predicting Eatm, anisotropic elasticity is con-
siderably more accurate than isotropic elasticity for calculating Eel. To bring out the
effects of elastic anisotropy, we repeated Eel calculations using isotropic elasticity.
For that, elastic constants from the Voigt average (Hirth and Lothe 1982, p. 424)
were used: shear modulus � ¼ 52:18GPa and Possion’s ratio � ¼ 0:2924. The so-
predicted elastic energies vary linearly with c1 but the slope is 14% larger than for the
atomistic data. In an attempt to ‘improve’ the isotropic elasticity estimate we
replaced the shear modulus � by an energy pre-factor K ¼ ½C44ðC11 � C12Þ=2�1=2,
as in the anisotropic expression for the dislocation self-energy (Ismail-Beigi and
Arias 2000). However, the resulting slope is still too large by 8%. Alternatively
one could treat � as a free parameter to obtain a best fit with the atomistic
data (Arias and Joannopoulos 1994). Such a procedure leads to a core energy of

EB
core ¼ 0:532 0:002 eV A

� �1
. Although this is rather close to our fully anisotropic

prediction, the agreement may well be fortuitous. This is because fitting the slope
using the isotropic formula for dislocation interactions amounts to trying to com-
pensate one inaccuracy (the use of isotropic elasticity) by introducing another (spe-
cially fitted values of the isotropic elastic constants � and �). In our view, an accurate
prediction of the core energetics should combine ab initio calculations with a fully
anisotropic treatment of the elastic fields in PBCs.

4.3. Atomistic modelling: the Peierls stress
The third application of our regularization method is the computation of dis-

location Peierls stress, that is the stress necessary to move a dislocation at zero
temperature. Peierls stress is an important characteristic of the resistance to plastic
deformation and correlates with the low temperature yield stress. Atomistic calcula-
tions of Peierls stress are often complicated by the image forces on dislocations
associated with the boundary conditions. In this section we show that in PBCs the
error associated with the image effects can be quantified and reduced with the help of
elasticity calculations.

For Peierls stress calculations it is more convenient to position the dislocation
dipole vertically, that is a ¼ c2=2. In this orientation, dislocations can glide on the
horizontal planes and avoid recombination which would be inevitable for a ¼ c1=2.
Here we report Peierls stress values computed for the more stable variant (type B) of
the screw dislocation core in the SW model of silicon, because core A was observed
to transform into core B under stress (Koizumi et al. 2000). We define x, y, z axes
along c1, c2, c3 directions and apply stress �yz on the simulation cell using the
Parrinello–Rahman (1981) implementation of the stress-controlled boundary condi-
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tions. This stress exerts equal but opposite forces on the two dislocations of the
dipole along x and �x directions respectively. A critical stress is obtained in a series
of calculations in which the applied stress is gradually increased. Each stress incre-
ment is followed by a complete relaxation of atomic forces, using a conjugate gra-
dient algorithm. The critical stress �c is defined as the value of �yz at which
continuous dislocation motion through the supercell sets in, manifesting itself in a
failure of the conjugate gradient relaxation sequence to converge. Because of
possible effects of the boundary image forces, �c is not necessarily equal to the
Peierls stress �PN. The latter corresponds to a critical stress in an idealized situation,
that is for a single dislocation in an infinite solid. Before presenting our results for
�PN we examine, based on our regularization approach, the origin and the magnitude
of the image forces in PBCs.

The image force is the negative derivative of the image energy with respect to the
dislocation position. For our analysis it is useful to consider the variation of the total
energy as a function of the relative position of two dislocations in the periodic
supercell. Figure 6 shows the energy of a dislocation dipole computed atomistically
under zero applied stress in PBCs, as a function of x, the distance between two
dislocations along the c1 direction. The energy is seen to oscillate periodically,
obviously owing to the interaction between two primary dislocations and their
images. For comparison, plotted on the same graph is the elastic interaction energy
computed for the same periodic supercell using the regularized anisotropic elasticity
solutions presented in appendices A and C. The atomistic and the anisotropic elas-
ticity energies agree very well. At the same time, the isotropic elasticity overestimates
the magnitude of the oscillations by a factor of two, again indicating its inaccuracy in
describing dislocation interactions.

Given the nearly perfect agreement between Eatm and Eel and the fact that the
core energy does not affect the energy variations shown in figure 6, in the following
we drop the subscripts atm and el and use a simpler notation E. The slope of the
EðxÞ curve in figure 6 is the image force that the dislocations see in addition to the
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Figure 6. The energy (*) of a dislocation dipole in PBCs as a function of the relative
position of two dislocations along the c1 direction and, when x ¼ 0, two dislocations
are separated by a ¼ c2=2: (——), anisotropic elasticity prediction; and (- - - -), iso-
tropic elasticity result.



Peach–Koehler force exerted by the external stress �yz. This extra force introduces an
error in the Peierls stress value computed in PBCs. Considering the shape of the EðxÞ
curve, it becomes obvious that this error is minimized for dislocation positions where
dE=dx ¼ 0, that is either at x ¼ 0 or at x ¼ c1=2. A second-order error still exists
even in these two special configurations, owing to a finite curvature d2E=dx2 and the
lattice discreteness. To examine the nature of this second-order effect let us define

�E � Eðx ¼ 0Þ � E

�
x ¼ c1

2

�
: ð24Þ

If �E < 0, as is the case for figure 6, then �c computed at x ¼ 0 overestimates the
Peierls stress, since the next lattice position has a slightly higher energy, owing to the
positive curvature d2E=dx2 in this point. On the contrary, �c computed at x ¼ c1=2
will underestimate �PN. For situations when �E > 0, the sign of this second-order
error inverts. Below, we make use of these observations to devise a practical proce-
dure for minimizing the error in Peierls stress calculations in PBC.

The elasticity theory predicts that �E is a homogeneous function of c1, c2 and a
of degree 0. In other words, the elastic energy of the dislocation dipole in PBCs will
not be affected by a simultaneous scaling of c1, c2 and a by the same numerical
factor. Figure 7 shows this function for the shuffle-set screw dislocation dipole in SW
silicon obtained from anisotropic (solid curve) and isotropic (broken curve) elasticity
calculations for the rectangular supercells. Both functions asymptotically approach
zero at very large ratios c2=c1, that is when the cell becomes vertically elongated.
However, the anisotropic solution predicts that j�Ej also crosses zero at a finite ratio
c2=c1, whereas the isotropic solution decays monotonically with increasing c2=c1. It is
an interesting observation that implies that, if indeed �E becomes zero at some finite
c2=c1, a supercell can be designed to be as close to this special aspect ratio as

554 W. Cai et al.

Figure 7. The amplitude �E of the energy variation as a function of the cell aspect ratio
c2=c1, for a shuffle-set screw dislocation dipole in silicon (Balamane et al.
1992). Anisotropic elasticity (——) predicts �E ¼ 0 at c2=c1 ¼ 2:5: Isotropic elasticity
(– – –) predicts a monotonic decrease in �E with increasing c2=c1. Atomistic simula-
tion data (*) with c1 ¼ 5½11�22� are also shown.



practically possible, to provide for cancellation of the image effects in the Peierls
stress calculations. To explore this issue further, we performed a series of atomistic
calculations for supercells with c1 ¼ 5½112� and c2 ¼ k½111�. For the cell with k ¼ 16,

j�Ej was found to be very small, only 0:9� 10�5 eV A
� �1

.

The existence of a special aspect ratio for which �E ¼ 0 is quite general. We
have observed a similar behaviour for an edge dislocation dipole in bcc
molybdenum (Cai et al. 2001), as shown in figure 8. Note the sign reversal of the
y axis from figure 7. In this case the supercell repeat vectors c1, c2, c3 are along ½111�,
½101� and ½121� respectively, and a ¼ c2=2. The regularized anisotropic elasticity
predicts that j�Ej should vanish at c2=c1 ¼ 2:918, whereas the isotropic solution
again decays monotonically with increasing c2=c1. To verify this prediction for the
case of edge dipole in bcc Mo, we performed three sets of atomistic calculations with
c1 ¼ 15, 20 and 30½111� using the Finnis–Sinclair (1984) model. The results are
largely consistent with the anisotropic elasticity prediction, but show a slight depen-
dence on the supercell size. With increasing cell size the atomistic results seem to
converge to the size-independent anisotropic elasticity solution, indicating that the
latter describes the limiting behaviour when lattice discreteness becomes negligible.

Having examined the origin of error in Peierls stress calculations in PBCs, we are
now well prepared to examine one lingering discrepancy reported in the literature.
Using the same atomistic model, two groups reported two vastly different values for
the Peierls stress of the shuffle-screw dislocations in silicon: 2:0GPa in the paper by
Koizumi et al. (2000) and 5:8GPa in the paper by Ren et al. (1995). Figure 9 (a)
shows the critical stress �c computed for different c2 with fixed c1 ¼ 5½112�. Values of
�c computed at x ¼ 0 are shown as open triangles, while those computed at x ¼ c1=2
are plotted as open inverted triangles. Both sets of data converge to 1:98GPa with
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Figure 8. The amplitude �E of the energy variation as a function of the cell aspect ratio
c2=c1, for an edge dislocation dipole in bcc Mo (Finnis and Sinclair 1984). Anisotropic
elasticity (——) predicts �E ¼ 0 at c2=c1 ¼ 2:918: Isotropic elasticity (– – –) predicts
that �E should decrease monotonically with increasing c2=c1. Atomistic simulation
data for c1 ¼ 15½111� ð�Þ; 20½111� (*) and 30[111] (þ) are shown.



increasing c2, while their averaged values (full circles) reach this asymptotic value
even for relatively short cells. It appears that the second-order error can be
eliminated even for supercells with c2 � c1, by computing the critical stress for
both high-symmetry positions x ¼ 0 and x ¼ c2=2 and taking the average of two
values. Given this observation, we now fix the aspect ratio at c2=c1 ¼ 1:1314 and
examine the convergence of �c with respect to the cell size. The results are shown in
figure 9 (b), for three different supercells with c1 ¼ 5½11�22�, 10½11�22� and 15½112� and
c2 ¼ 8½111�; 16½111� and 24½111� respectively. The averaged �c are almost identical for
c1 ¼ 10½112� and 15½112�, converging to �PN ¼ 1:96GPa. This value agrees with the
more recent result of 2:0GPa (Koizumi et al. 2000), prompting us to conclude that
the earlier result of 5:8GPa (Ren et al. 1995) is probably incorrect.

4.4. Stress field in three dimensions
This section focuses on yet another application of the regularization approach

that is especially relevant for mesoscale dislocation dynamics simulations in three
dimensions. In dislocation dynamics simulations, dislocation lines are discretized
into short line segments (Devincre and Kubin 1997, Zbib et al. 1998, Schwarz
1999, Ghoniem et al. 2000), interacting with each other through long-range elastic
fields. Numerical evaluation of these interactions presents a major computational
bottleneck for dislocation dynamics simulations. The unit element of such calcula-
tions is evaluation of stress produced at a given material point P by a dislocation
segment centred at position S. Using the analytical formulae developed in the con-
tinuum theory (Hirth and Lothe 1982, p. 132), it takes a few hundred arithmetic
operations to obtain all six stress components from a general dislocation segment of
finite length. If one were to use PBCs, the computational burden would increase
manyfold because the stress field of multiple periodic images of the primary segment
would have to be evaluated. Considering that the overall computational burden of
stress calculations already scales as OðN2Þ (here N is the number of dislocation
segments) the brute-force treatment of the image stress in PBCs becomes prohibitive.

556 W. Cai et al.

Figure 9. Critical stress to move a shuffle-set screw dislocations in silicon computed for (a)
different c2=c1 with fixed c1 ¼ 5½11�22� and (b) different c1 with fixed c2=c1 ¼ 1:1314:
ð�Þ, data points for x ¼ 0; (!), data points for x ¼ c1=2; (*), obtained by averaging
data points for x ¼ 0 and x ¼ c1=2.



A possible solution (Bulatov et al. 2001) is to pre-calculate and tabulate the
image stress, that is the correction stress due to the image segments, on a grid within
the computational volume and then interpolate between the grid values during the
simulations. Operationally, to calculate the tables, one needs to compute stress on
grid points when the dislocation segment is located at the centre of the computa-
tional cell. Because only the stress fields of image segments that are outside the
computational volume are summed, the correction stress is free of singularity and
hence smooth. We only consider differential (point-like) dislocation segments, that is
segments whose length dl is considerably smaller than their distance to the field
point. Compared with the case of straight segments of finite length, the use of
differential segments reduces the dimensionality of the tables from four to three.
Furthermore, in the cubic simulation boxes, the total number of independent
look-up tables can be reduced from 54 (six stress components � nine components
of tensor b� dl) to eight by symmetry considerations. The remaining eight tables are
for two stress components (�12 and �13) for a unit screw segment b ¼ dl ¼ ½100� and
for six stress components for a unit edge segment b ¼ ½010�, dl ¼ ½100�.

In the remaining part of this section, we consider an example of the stress �13
produced by a differential edge segment in a unit simulation cube x, y,
z 2 ½�0:5; 0:5�. Let us define �segðrÞ to be the stress field of a dislocation segment
at the origin. In the isotropic elasticity (Hirth and Lothe 1982, p. 132),

�seg13
�

¼ �x

ð1� �Þr3
� 3xz2

ð1� �Þr5 ; ð25Þ

where � is the shear modulus, � is Poisson’s ratio and r ¼ ðx2 þ y2 þ z2Þ1=2. Define

�sumðrÞ ¼
X
R

�segðr� RÞ; ð26Þ

where the sum
P

runs over all lattice points in a three-dimensional sc lattice with the
lattice constant equal to unity. The correction stress that we intend to tabulate
excludes the primary dipole:

�imgðrÞ ¼ �sumðrÞ � �segðrÞ ¼
X
R

0 �segðr� RÞ; ð27Þ

where the sum
P0 excludes the origin.

Because �segðrÞ / r�2 (equation (25)), the sum in equation (42) (now in three
dimensions) is not absolutely convergent. However, the second derivatives of
�segðrÞ scale as r�4 and their sum should be absolutely convergent. Similar to the
case of displacement fields discussed in } 4.3, the spurious field produced by the
conditionally convergent sum is

�sumðrÞ ¼ �PBCðrÞ þ gErþ �0; ð28Þ

where g is a third-order tensor accounting for a stress gradient and �0 is an average
stress. It is now straightforward to obtain a regularized solution �PBCðrÞ from an
arbitrarily chosen summation sequence �sumðrÞ, by measuring these two constants g
and �0 and subtracting them.

Because the stress fields of a differential dislocation segment should be anti-
symmetric with respect to inversion, that is �segð�rÞ ¼ ��segðrÞ, it is a simple matter
to ensure that �0 ¼ 0 by always including the image segment at �R whenever an
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image segment at R is encountered. In other words, �0 vanishes if the following form
for the stress field is assumed:

�sumðrÞ ¼ 1
2

X
R

�segðr� RÞ þ �segðrþ RÞ: ð29Þ

The stress gradient g, on the other hand, is generally non-zero. However, it can
be easily calculated after the summation is completed, for example

gEêex ¼ �sum
�

êex

2

�
� �sum

�
� êx

2

ex

2

�
; ð30Þ

and similarly for gEêey, gEêez, where êex is the unit vector along the x axis. The needed
regularized solution is then

�PBCðrÞ ¼ �sumðrÞ � g � r: ð31Þ

As an example, we compute the stress field on a cubic 33� 33� 33 grid within
the unit cube. For that, we sum the contributions from all images within a larger
cube x; y; z 2 ½�20; 20�. Figure 10 (a) shows �sum13 (in the units of � for � ¼ 0:309) as a
function of x and y for fixed z ¼ 0:5, before correction. We note that stress is not
periodic along y direction. After the correction (equation (31)), the stress field
becomes fully periodic, as shown in figure 10 (b). Figure 11 (a) shows an isosurface

of the total (primary plus image) stress field computed for �PBC13 ðrÞ ¼ �2; in this plot
its singular behaviour at the origin and its periodicity along z direction are worth
noticing. Figure 11 (b) shows an isosurface of the image stress for �

img
13 ðrÞ ¼ 0, which

is notably free of singularity and is zero at the origin. We also see that the correction
field retains some periodicity and symmetry of the cube.

Two more plots of �img13 ðrÞ on planes z ¼ 0:5 and z ¼ 0 are shown in figures 12 (a)
and (b) respectively. Here, it is interesting to note that the correction stress is gen-
erally non-zero on the cube faces. This observation calls into question the use of a
cut-off distance for reducing the cost of computing the interactions between disloca-
tion segments in dislocation dynamics simulations in three dimensions.
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Figure 10. Stress field (xz component) of a differential edge dislocation segment in PBCs.
�sum13 obtained by superimposing the stress field of a periodic array of segments, as a
function of x and y at z ¼ 0:5. Note that it is not fully periodic owing to a non-zero
linear term. (b) The same, after subtracting the spurious linear term.



} 5. Summary
This contribution deals with the issue of conditional convergence of lattice sums

of image interactions in periodic dislocation arrays. We examine the origin of the
problem and show that conditional convergence produces spurious non-periodic
fields that depend on the order of summation. Regularization of conditionally con-
vergent sums can be achieved either by modifying each term in the sum in such a way
that the new sequence becomes absolutely convergent, or by first computing a con-
ditionally convergent sum and then correcting the result by subtracting the spurious
field components. Given its operational convenience and the ease of implementation,
in this work we mostly rely on the second approach. To check its applicability, we
examine the method’s performance in a variety of situations often encountered in
dislocation modelling ranging from Peierls stress calculations in exceedingly small
nanometre-sized supercells to large multiple micrometre-sized continuum simula-
tions of dislocation dynamics. The results verify that the regularization techniques
proposed here are accurate and robust.
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Figure 11. (a) Isosurface �sum13 ¼ �2. (b) Zero-value isosurface of the tabulated stress
correction term �img13 , interpolated in the unit cube as a function of segment position.

Figure 12. Correction stress field �img13 as a function of x and y; (a) on plane z ¼ 0:5; (b) on
plane z ¼ 0.
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APPENDIX A
Derivation of the Image Energy

In this section, we first derive equation (15) for the total elastic energy of a
dislocation dipole in a linear elastic medium under PBCs, by measuring the reversible
work done to create the dipole. Then, by comparing the result with lattice sums of
image interactions, we derive the correction term to the image energy computed
through equation (17). Finally we express the correction term through ‘ghost’ dis-
locations and their interaction with the periodic array of image dipoles
(equation (19)).

A.1. Elastic energy of a dislocation dipole in periodic boundary conditions
Consider a reversible path by which a dislocation dipole is inserted in a defect-

free elastic medium under PBCs. Let E1 be the energy of the medium before (initial
state) and E2 be the energy after the dipole is inserted (final state). For generality, let
the initial state have a non-zero uniform stress �1. Define E0 as the energy of the
defect-free and stress-free reference state. Then

E1 ¼ E0 þ 1
2
Sijkl�

1
i j�

1
klV � E0 þ 1

2
Sð�1Þ2V ; ðA1Þ

where S is the elastic compliance tensor and V is the volume of the periodic cell. The
purpose of this section is to derive a useable expression for the total elastic energy
Eel ¼ E2 � E0 in terms of the stress field �ðrÞ in the final state.

The energy difference E2 � E1 is obtained by calculating the reversible work done
during insertion of the dislocation dipole. As shown in figure A 1, the dipole is
created by making a cut along surface A, and displacing the sides of the cut with
respect to each other by b. To displace the cut surfaces, traction forces are applied to
balance the additional internal stress that changes continuously from �1 to �. Along
the same path, the surface traction forces perform mechanical work

E2 � E1 ¼ �W

¼ � 1
2

ð
dAjbið�i jðrÞ þ �1i jÞ

¼ � 1
2

ð
dAjbi�

0
i jðrÞ � 1

2
Ajbið�i j þ �1i jÞ; ðA2Þ

where � � h�ðrÞiV is the volume average of the final stress �ðrÞ, and �0ðrÞ � �ðrÞ � �
is the stress field variation around the average stress �.
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We can now obtain Eel by summing equations (A 1) and (A 2) but wish to
eliminate �1 and to express Eel solely in terms of � and �0ðrÞ for our purposes.
Note that creating the dislocation dipole introduces the plastic strain

�pi j ¼
biAj

V


 �
s

; ðA3Þ

where the symmetrization is defined by ½ai j�s ¼ ðai j þ ajiÞ=2. Assuming that the
boundaries of the periodic solid do not move in response to insertion of the disloca-
tion dipole, the total average strain � remains zero, that is

�i j ¼ �ei j þ �pi j ¼ 0; ðA4Þ

�ei j ¼ ��pi j ¼ �
biAj

V


 �
s

; ðA5Þ

where �e and �p are the average elastic and plastic strains respectively. The non-zero
elastic strain produces a non-zero change in average stress associated with the
dislocation dipole

�i j � �1i j ¼ Cijkl�
e
kl ¼ �Cijkl

bkAl

V
ðA6Þ

where C ¼ S
�1 is the tensor of elastic constants. Therefore,

½biAj�s ¼ SijklVð�kl � �1klÞ; ðA7Þ

biAjð�i j þ �1i jÞ ¼ SijklVð�i j�kl � �1i j�
1
klÞ � SV ½ð�Þ2 � ð�1Þ2�: ðA8Þ

Combining equation (A 1), (A 2) and (A 8), we have

Eel ¼ E2 � E0 ¼ � 1
2

ð
dAjbi�

0
i jðrÞ þ 1

2
S�2V : ðA9Þ

The fact that �1i j drops out from the above equation is a restatement, for the case of
periodic solid, of the theorem asserting that there is no interaction between external
and internal stress in a linear elastic solid (Hirth and Lothe 1982, p. 53).

A.2. Correction term of image energy
In an attempt to relate equation (15) and the naı̈ve image summation in

equation (6), we write �0ðrÞ as a superimposition of the stress fields of image dis-
location dipoles. Because h�0i jðrÞiV � 0 by definition, we have

�0i jðrÞ ¼ �sumi j ðrÞ � �erri j ; ðA10Þ

�sumi j ðrÞ �
X
R

�dipolei j ðr� RÞ; ðA11Þ

�erri j � �sumi j ðrÞ
� �

V
; ðA12Þ

where �dipolei j ðr� RÞ is the stress field in r produced by a dislocation dipole at R and
the summation

P
runs over all lattice sites R ¼ n1c1 þ n2c2, with n1 and n2 integers,

including R ¼ 0 (primary dipole). Note that the integration of the stress field pro-
duced by one dislocation dipole over the area enclosed by another dipole is simply
the interaction energy between the two dipoles:
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Eprm ¼ � 1
2

ð
dAjbi�

dipole
i j ðrÞ; ðA13Þ

EddðRÞ ¼ �
ð
dAjbi�

dipole
i j ðr� RÞ: ðA14Þ

The factor 1
2
in equation (A 13) accounts for self interaction. Substituting equations

(A 10), (A 13) and (A 14) into equation (A 9), we obtain

Eel ¼ Eprm þ 1
2

X
R

0 EddðRÞ þ 1
2
Ajbi�

err
i j þ 1

2
S�2V ; ðA15Þ

Eimg ¼ 1
2

X
R

0 EddðRÞ þ 1
2
Ajbi�

err
i j þ 1

2
S�2V : ðA16Þ

Assuming that the average stress � in the periodic cell is zero, the correction term
1
2Ajbi�

err
i j is defined by the volume average of the lattice sum for the stress field �erri j of

primary and image dipoles. Interestingly, the lattice sum for 1
2Ajbi�

err
i j is also con-

ditionally convergent but this term exactly cancels the error term in equation (6),
provided that the same summation sequence is used to compute both sums.
Therefore, the corrected Eimg in equation (17) does not depend on the summation
order and is absolutely convergent. This regularization procedure is similar to that
used by Wolf (1992) for computing the Madelung sums of Coulomb interaction in
the lattice of electric dipoles. The next section describes a convenient procedure for
computing the correction term 1

2
Ajbi�

err
i j .

A.3. Potential field and ‘ghost’ dislocations
Since the average in equation (A 12) is not easy to compute, we provide a special

procedure for computing 1
2
Ajbi�

err
i j instead. We show that the correction term can be

computed as a sum of interaction energies between the periodic array of dislocation
dipoles and a set of test or ‘ghost’ dislocations.

Let L be the length of the cell along c3 (z direction). Then, as shown in figure A 1,

A ¼ ðez � aÞL; or; Aj ¼ �j3kakL ðA17Þ

Ajbi�
err
i j ¼ ð�j3kakLÞbi�

err
i j ¼ �akgkL ¼ �ðaEgÞL; ðA18Þ

meaning that the correction term Ajbi�
err
i j is proportional to the average slope g of

the potential field �ðrÞ. Combining this with equation (14), and defining �, 	 to
satisfy a ¼ �c1 þ 	c2, we obtain

Ajbi�
err
i j ¼ �ð�c1Egþ 	c2 � gÞL

¼ �f�½�ðr1 þ c1Þ � �ðr1Þ� þ 	½�ðr2 þ c2Þ � �ðr2Þ�g�L: ðA19Þ

This equation points to a practical recipe for computing the correction term Ajbi�
err
i j .

As shown in figure 1, we introduce four ‘ghost’ dislocations �b, ��b, 	b and �	b
such that �b and ��b are separated by c1, and 	b and �	b are separated by c2.
Defining EdgðRÞ to be the interaction energy between four ‘ghost’ dislocations and a
dislocation dipole at R, equation (A 19) can be rewritten as
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Ajbi�
err
i j ¼ �

X
R

EdgðRÞ; ðA20Þ

Eimg ¼ 1
2

X
R

0 EddðRÞ � 1
2

X
R

EdgðRÞ þ 1
2
S�2V

¼ 1
2

X
R

0 EddðRÞ � EdgðRÞ
� 	

� 1
2
EdgðR ¼ 0Þ þ 1

2
S�2V ; ðA21Þ

in which
P

includes R ¼ 0 (primary dipole) but
P0 does not.

APPENDIX B

Green’s function: an alternative approach to energy regularization

The solution developed in } 3 and appendix A is based on a derivation of the
dislocation dipole energy in an elastic medium that is under PBCs. This energy (Eel)
was obtained by evaluating the work done along a reversible transformation path to
the final state (dislocation dipole in PBCs) from some initial state with known
energy. In that derivation, the initial state was chosen to be a defect free elastic
solid under PBCs from which the final state was obtained by inserting a dislocation
dipole through a cut and shift operation, under fixed PBCs. Given that the energy of
the dislocated crystal under PBCs is a state variable, any other reversible transfor-
mation will work as well. For example, we can choose the initial state to be a
dislocation dipole in an infinite elastic medium; the energy of this system is also
known. The transformation is then on the boundary conditions, that is switching the
infinite medium to a finite cell under PBCs. In this section, we briefly outline this
procedure providing an alternative way to computing the image energy that is also
free from the artefacts caused by conditional convergence.

Consider a dislocation dipole in an infinite elastic medium, as shown in
figure B 1 (a), with elastic energy E1 ¼ Eprm (e.g. equation (5)). Define B as the
boundary of a parallelepiped box containing the dipole, and let uðxÞ be the displace-
ment field on B (x 2 BÞ. Similar to the well-known Eshelby inclusion construct, let us
carve out the box and exert a traction force fðxÞ on its border (and �fðxÞ on the inner
surface of the hole in the infinite medium) to compensate for the internal stress that
existed before carving the hole and to keep the displacement uðxÞ unchanged
(figure B 1 (b)). The energy of transformation from this initial state to PBC can
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Figure A1. Introducing a dislocation dipole by cutting a defect-free medium along the
surface A and displacing the positive side of the cut by b relative to the negative side.



now be obtained by summing two contributions (figure B 1 (c)): firstly, the energy
stored in the infinite solid with the hole and, secondly, the energy required to deform
the box to make it conform to periodic boundaries. The stored energy contribution is
conveniently obtained by reducing the traction on the inner surface of the hole to
zero and integrating the work performed along the way. At the same time, the energy
of the additional deformation of the box to the required PBC shape can be obtained
by changing the traction on the box surfaces from fðxÞ to ~ffðxÞ and, simultaneously,
changing uðxÞ to ~uuðxÞ so that both ~ffðxÞ and the resulting displacement on the
boundaries both satisfy PBCs. The latter demand that ~uu is symmetric and ~ff is anti-
symmetric on the opposite faces of B. Let the work done in these two transforma-
tions be �W1 and �W2 respectively, and define �fðxÞ � ~ffðxÞ � fðxÞ and
�uðxÞ � ~uuðxÞ � uðxÞ; then

Eimg ¼ �W1 þ�W2; ðB1Þ

�W1 ¼ 1
2

þ
B

dx fðxÞuðxÞ; ðB2Þ

�W2 ¼ 1
2

þ
B

dx ½fðxÞ þ~ffðxÞ��uðxÞ: ðB3Þ

Note that �fðxÞ and �uðxÞ are not independent but are related by

�fðxÞ ¼
þ

B

dx Gðx;x0Þ�uðx0Þ; ðB4Þ

where Gðx; x0Þ is the Green’s function of the parallelepiped box bounded by B.
Therefore,

�W2 ¼ 1
2

þ
B

dx �uðxÞE 2fðxÞ þ
þ

B

dx0 Gðx; x0Þ�uðx0Þ
� �

: ðB5Þ
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Figure B 1. A reversible path to transform the fields produced by (a) a dislocation dipole in
an infinite medium into the fields of (c) a dipole contained in a periodic box. (b) The
intermediate step in which the rectangular volume containing the dipole with
boundary B is carved out and external forces f and �f are exerted on the cut surfaces
to maintain the displacement fields u. The final configuration is obtained by relaxing
the force tractions on the inner surfaces of the infinite domain and transforming f and
u on the surfaces of the rectangular domain into ~ff and ~uu that satisfy PBCs.



Given that fðxÞ and uðxÞ are known from the solution of a dislocation dipole in an
infinite medium, �W2 and hence Eimg can be obtained by finding the �uðxÞ that
minimizes equation (B 5) under the constraint that ~uu is symmetric and ~ff is anti-
symmetric on the opposite faces of boundary B.

We have developed a finite-element-model-based numerical procedure that
minimizes equation (B 5) under the periodic boundary constraints. The procedure
is found to produce numerical results that are identical with the results obtained
using the ‘ghost’ dipole regularization procedure described in } 3 and appendix A.
Given that the latter is simpler to implement, we used the ‘ghost’ dislocation method
in this work almost exclusively.

APPENDIX C

Dislocation interaction in anisotropic elasticity

This appendix provides a useful formula for the interaction energy between two
parallel straight dislocations in a generally anisotropic elastic medium. This energy is
obtained by integrating the force exerted by a dislocation at the origin on another
dislocations at ðx; yÞ (the dislocations are assumed to be parallel to z axis).

The stress field of a dislocation (Burgers vector bð1Þ) at the origin is given by the
well-known Stroh solution (Hirth and Lothe 1982, p. 436):

�i j ¼ Re
�1
2pi

X3
n¼1

BijkðnÞAkðnÞDðnÞ��1n

 !
; ðC1Þ

where �n ¼ x þ pny, n ¼ 1; 2; 3; 4; 5; 6 and pn are the roots of the sextic
equation (Hirth and Lothe 1982, p. 436) and p4 ¼ p*1; p5 ¼ p*2; p6 ¼ p*3. B, A and
D are certain tensors of rank 3, 1, 0 that depend on the elastic constants and pn and
bð1Þ. According to the Peach–Koehler equation the force per unit length of the
second dislocation (Burgers vector bð2Þ) is

f ¼ ðrEbð2ÞÞ � êez: ðC2Þ

Define

h	ðnÞ ¼ �j3	BijkðnÞb
ð2Þ
i AkðnÞDðnÞ; 	 ¼ 1; 2: ðC3Þ

Then

f ðx; yÞ ¼
X3
n¼1

Re
�1
2pi

h	ðnÞ
x þ pny

� �
: ðC4Þ

Defining the polar coordinates ðr; �Þ as shown in figure C 1, one has x ¼ r cos �,
y ¼ r sin �. Taking ðr ¼ rc; � ¼ 0Þ as the reference state in which the interaction
energy W ¼ 0, the energy W at any point along the x axis can be obtained by
straightforward integration:

Wðr; � ¼ 0Þ ¼ �
ðr

rc

fEdr ¼
X3
n¼1

Re
1

2pi
h1ðnÞ ln

�
r

rc

�
 �
: ðC5Þ

Now, the required energy Wðr; �Þ can be obtained by integrating along the arc with
constant r, as in figure C 1 (b), that is
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Wðr; �Þ � Wðr; 0Þ ¼ �
ð�
0

r d� fEêe� ¼
X3
n¼1

Re
1

2pi
h1ðnÞ ln ðcos �þ pn sin �Þ

� �
: ðC6Þ

This second integration uses the fact that h2ðnÞ ¼ h1ðnÞpn, which can be proven by
demanding the total work to be zero when the second dislocation moves along a
closed path ðx0; 0Þ ! ðx; 0Þ ! ðx; yÞ ! ðx0; yÞ ! ðx0; 0Þ. The final result is then

Wðr; �Þ ¼
X3
n¼1

Re
1

2pi
h1ðnÞ ln

�
r

rc

�
þ ln ðcos �þ pn sin �Þ


 �� �
; ðC7Þ

Wðx; yÞ ¼
X3
n¼1

Re
1

2pi
h1ðnÞ ln

�
x þ pny

rc


 ��
: ðC8Þ
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