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Abstract. Multiscale materials modeling has emerged as a significant 
concept as well as a unique approach in computational materials 
research.  We examine here the role of atomistic simulations in 
modeling the structural responses of solids to thermal and mechanical 
loading, particularly with regard to the mechanistic understanding 
derived from the atomic-level details generally not available from 
experiments.  Theoretical strength is defined through elastic modes of 
instability, or more generally, through the onset of soft vibrational 
modes in the deformed lattice.  Molecular dynamics (MD) simulation 
of stress-strain response provides a direct measure of the effects of 
small-scale microstructure on strength, as illustrated by results on 
single crystal, amorphous, and nanocrystalline phases.  In the kinetics 
of melting, we distinguish between the thermoelastic process of 
mechanical melting which is homogeneous and sets the upper of 
metstability of the lattice, and the free-energy driven process of 
thermodynamics melting which involves nucleation and growth and is 
therefore heterogeneous.  In the kinetics of defect mobility we study 
dislocation dynamics by direct MD simulation and a mesoscale 
(kinetic Monte Carlo) which couples kink mechanism energetics to 
the experimentally measured dislocation velocity.  In the area of crack 
propagation, the fundamental problems of brittle-ductile transition and 
crack-tip plasticity are two well-known problems in fracture 
mechanics that have been looked at from the atomistic standpoint.  
From these case studies one may gain some appreciation of the 
capabilities, as well limitations, of atomistic simulations to provide 
physical insight in computational materials research. 

 
1.  Introduction 
  
 Understanding materials behavior at the atomic level has long been a grand 
challenge to scientists and engineers across many disciplines.  Currently there is 
widespread interest in identifying fundamental problems in materials modeling which 
combine scientific challenges with technologically relevant applications [1].  To provide a 
basis for such inquiries, we discuss here a particular focus on the molecular understanding 
of mechanical behavior, in the context of a multiscale approach to materials theory and 
simulation [2,3].  The aim of this chapter, written in the spirit of a set of lecture notes, is to 
discuss how strength and deformation at the atomistic level can be probed through 
structural instability and modes of dynamical response to critical loading, through heating 



or an applied stress.  In examining several case studies we hope the readers will feel 
stimulated to draw analogies between fundamental issues which sometimes are considered 
only separately, such as thermal versus mechanical responses, elastic and plastic 
deformations, and homogenous and heterogeneous processes.  By noting the contrasts and 
parallels between the individual topics discussed, we believe it is possible to appreciate the 
role of atomistic simulations in probing complex systems phenomena in the materials 
research arena and beyond.       
 
2.  Limits to Strength:  Structural Instabilities 
 
 The theoretical basis for describing the mechanical stability of a crystal lattice lies 
in the formulation of stability conditions which specify the critical level of external stress 
that the system can withstand.  Lattice stability is not only one of the most central issues in 
elasticity, it is also fundamental in any analysis of structural transitions in solids, such as 
polymorphism, amorphization, fracture, or melting.  In these notes our goal is to discuss the 
role of elastic stability criteria at finite strain in elucidating the competing mechanisms 
underlying a variety of structural instabilities, and the physical insights that may be gained 
by probing stress and temperature induced structural responses through atomistic 
simulations. 
 Born has shown that by expanding the internal energy of a crystal in a power series 
in the strain and requiring positivity of the energy, one obtains a set of conditions on the 
elastic constants of the crystal that must be satisfied to maintain structural stability of the 
lattice [4,5].  This then leads to the determination of ideal strength of perfect crystals as an 
instability phenomenon, a concept which has been examined by Hill [6] and Hill and 
Milstein [7], as well as used in various applications [8].  That Born's results are valid only 
when the solid is under zero external stress has been explicitly pointed out in a later 
derivation by Wang et al [9] invoking the formulation of a Gibbs integral.  Further 
discussions were given by Zhou and Joos [10]  and by Morris and Krenn [11], the latter 
emphasizing the thermodynamic basis of the concept of theorertical strength by showing 
that the conditions of elastic stability, based on Gibbs’ original formulation [12], are 
identical to the results of Wang et al. in which the loading mechanism fixes the Cauchy 
stress.   A consequence of these investigations is that theoretical strength should be 
considered a property which can be affected by the symmetry and magnitude of the applied 
load, rather than an intrinsic property of the material system only.  In this respect the study 
of theoretical limits to material strength using atomistic models, including first-principles 
calculations [13], promises to yield new insights into mechanisms of structural instability. 
 While the stability criteria say nothing about the final state toward which a 
structurally unstable system will evolve, nevertheless they can be invaluable in interpreting 
molecular dynamics simulation results.  In the context of simulating the outcome of a 
virtual strength test, quantitative predictions can be made of the maximum deformation 
(strain) the lattice can sustain, and the competition between different modes of instability 
can be analyzed.  In this section we will first give a brief derivation of elastic stability at 
finite strain to bring out in a direct manner the interplay between the intrinsic response to 
deformation and the effect of external work.  Then we note that vibrational instability in the 
form of soft phonon modes is an extension of this concept, and that direct molecular 
dynamics simulation can be used to probe both.  In the last part of this section we consider 
briefly the how strength is affected by the microstructure of the material.  Since a crystal 
attains its ideal (maximum) strength in the absence of any defect, it is that the presence of 
any microstructural features, such as disorder or interfaces, will lower the strength. 
 
2.1  Elastic Stability Criteria 
 



 Consider a perfect lattice undergoing homogeneous deformation under an applied 
stress τ , where the system configuration changes from X to Y = JX, with J being the 
deformation gradient or the Jacobian matrix.  The associated Lagrangian strain tensor is 
 
   η = (1/ 2)(JT J − 1)     (1) 
 
Let the change in the Helmholtz free energy be expressed by an expansion in η  to second 
order, 
 
  ∆F = F(X,η) − F(X,0) 
 
        = V(X)[t(X )η + (1/ 2)C( X)ηη]    (2) 
 
where V is the volume, t the conjugate stress which is also known as the thermodynamic 
tension or the second (symmetric) Piola-Kirkhoff stress, and C the fourth-order elastic 
constant tensor.  For the work done by an applied stress τ , which is commonly called the 
Cauchy or true stress, we imagine a virtual move near Y along a path where J → J + δJ  
which results in an incremental work 
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         = V(Y )Tr(J −1τJ −Tδη)      (3) 
 
The work done over a deformation path  A ,  ∆W (A) , is the integral of δW , given by Eq.(3), 
over the path.  To examine the lattice stability at configuration X, we now consider the 
difference between the increase in Helmholtz free energy and the work done by the 
external stress, 
 
    ∆G(Y,A) = ∆F(X,η) − ∆W(A)  
 
      

  
= g(Y )dη

A
∫       (4) 

 
where 

   g(Y ) =
∂F
∂η

− V(Y )J −1τJ− T     (5) 

 
One may also interpret ∆ G  in the spirit of a virtual work argument.  If the work done by 
the applied stress exceeds that which is absorbed as the free energy increase, then an excess 
amount of energy would be available to cause the displacement to increase and the lattice 
would become unstable. 
 We regard ∆ G  as a Gibbs integral in analogy with the Gibbs free energy, the 
appropriate thermodynamic potential in the (NTP) ensemble.  However, notice that ∆ G  is 
in general dependent on the deformation path through the external work contribution.  This 
means that strictly speaking it is not a true thermodynamic potential on which one can 
perform the usual stability analysis.  Nevertheless,  -g(Y) can be treated as a force field in 



deformation space for the purpose of carrying out a stability analysis [9].  Suppose the 
lattice, initially at equilibrium at X under stress τ , is perturbed to configuration Y with 
corresponding strain η .  A first-order expansion of g(Y) gives 
 
   gij(η) = V(Y )Bijklηkl + ...     (6) 
 
where, by using V(Y ) = V (X)det J , one obtains 
 

   Bijkl = Cijkl −
∂(det J Jim
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          = Cijkl + Λijkl (τ )      (7) 
 
with 
  Λ ijkl (τ ) = (1/ 2)[δ ikτ jl + δ jkτ il + δilτ jk +δ jlτ ik − 2δ klτ ij ] (8) 
 
δij  being the Kronecker delta symbol for indices i and j.  The physical implication of 
Eq.(6) is that in deformation space the shape of the force field around the origin is 
described by B.  The stability condition is then the requirement that all the eigenvalues of B 
be positive, or  
 
    det A > 0      (9) 
 
where A = (1 / 2)(BT + B) , with B being in general asymmetric [9],  In cases where the 
deformation gradient J is constrained to be symmetric, as in certain atomistic simulations at 
constant stress, one can argue that the condition det|B| > 0 is quite robust [9].    Thus, lattice 
stability is governed by the fourth-rank tensor B, a quantity which has been called the 
elastic stiffness coefficient [14].  It differs from the conventional elastic constant by the 
tensor Λ which is a linear function of the applied stress.  The foregoing derivation shows 
clearly the effect of external work which was not taken into account in Born's treatment.  In 
the limit of vanishing applied stress one recovers the stability criteria given by Born [4,5]. 
 In the present discussion we will consider only cubic lattices under hydrostatic 
loading in which case the stability criteria take on a particularly simple form, 
 
   K = (1 / 3)(C11 + 2C12 + P) > 0  
 
   ′ G = (1 / 2)(C11 − C12 − 2P) > 0    (10) 
 
    G = C44 − P > 0  
 
where Cij  are the elastic constants at current pressure P, P > 0 ( < 0) for compression 
(tension).  K is seen to be the isothermal bulk modulus, G' and G the tetragonal and 
rhombohedral shear moduli respectively.  The theoretical strength is that value of P for 
which one of the three conditions in Eq.(10) is first violated.  A simple demonstration 
showing that the external load must appear in the stability criteria is to subject a crystal to 
hydrostatic tension by direct atomistic simulation using a reasonable interatomic potential.  
In this case one finds the instability mode is the vanishing of K, whereas the Born criteria, 
Eq.(10) with P set equal to zero, would predict the vanishing of G' [9]. 



 It is worth mentioning that the six components of the eigenmodes of deformation 
corresponding to the three zero eigenvalues of det(B) are  (1,1,1,0,0,0)δ η , 
(δηxx ,δηyy ,δηzz ,0, 0,0)  with δηxx + δηyy + δηzz = 0  in the order indicated in Eq.(10) [9].  
The deformation when the bulk modulus vanishes (spinodal instability) preserves the cubic 
symmetry, while for the tetragonal shear instability the cubic symmetry must be broken. 
 The connection between stability criteria and theoretical strength is rather 
straightforward.  For a given applied stress τ  one can imagine evaluating the current elastic 
constants to obtain the stiffness coefficients B.  Then by increasing the magnitude of τ  one 
will reach a point where one of the eigenvalues of the matrix A (cf. Eq.(3)) vanishes.  This 
critical stress at which the system becomes structurally unstable is then a measure of 
theoretical strength of the solid  In view of this, one has a direct approach to strength 
determination through atomistic simulation of the structural instability under a prescribed 
loading.  If the simulation is performed by molecular dynamics, temperature effects can be 
taken into account naturally by following the particle trajectories at the temperature of 
interest. 
 Under a uniform load the deformation of a single crystal is homogeneous up to the 
point of structural instability.  For a cubic lattice under an applied hydrostatic stress, the 
load-dependent stability conditions are particularly simple, being of the form 
 
   B = (C11 + 2C12 + P) / 3 > 0 ,  G' = (C11 − C12 − 2P) / 2 > 0 ,  G = C44 − P > 0  (11) 
 
where P is positive (negative) for compression (tension), and the elastic constants Cij are to 
be evaluated at the current state.  While this result is known for some time [15-17], direct 
verification against atomistic simulations showing that the criteria do accurately describe 
the critical value of P (Pc) at which the homogeneous lattice becomes unstable has been 
relatively recent [9, 18-22].  One may therefore regard Pc as a definition of theoretical or 
ideal tensile (compressive) strength of the lattice. 
 

 
 



 
Fig.1. Variation of elastic moduli, K, G, and G', with lattice strain under hydrostatic 

loading at 0 K, (a) β -SiC, and (b) Si.  r/ro = 1 denotes the condition of zero stress.   
 

Turning now to molecular dynamics simulations we show in Fig. 1 the stress-strain 
response for a single crystal of Ar under uniaxial tension at 35.9K.  At every step of fixed 
strain, the system is relaxed and the virial stress evaluated.  One sees the expected linear 
elastic response at small strain up to about 0.05; thereafter the response is nonlinear but still 
elastic up to a critical strain of 0.1 and corresponding stress of 130 MPa.  Applying a small 
increment strain beyond this point causes a dramatic stress reduction (relief) at point (b).  
Inspection of the atomic configurations at the indicated points shows the following.  At 
point (a) several point defect like inhomogeneities have been formed; most probably one or 
more will act as nucleation sites for a larger defect which causes the strain energy to be 
abruptly released.  At the cusp, point (b), one can clearly discern an elementary slip on an 
entire [111] plane, the process being so sudden that it is difficult to capture the intermediate 
configurations.  Figuratively speaking, we suspect that a dislocation loop is spontaneously 
created on the (111) plane which expands at a high speed to join with other loops or 
inhomogeneities until it annihilates with itself on the opposite side of the periodic border of 
the simulation cell, leaving a stacking fault.  As one increases the strain the lattice loads up 
again until another slip occurs.  At (c) one finds that a different slip system is activated. 
     
2.2  Soft Modes 
 



 
                                  (a)                                                                       (b) 
Fig. 2. Phonon dispersion curves of single crystal of Ar as described by the lennard-Jones 

potential (solid lines), (a) comparison of results for equilibrium condition with 
experimental data (circles), (b)  results for uniaxial tension deformation at strain of 
0.138 (corresponding stresses of 266 MPa and 119 MPa along the tensile and 
transverse direction). 

 
 One may regard the stability criteria, Eq.(5), as manifestation in the long 
wavelength limit of the general condition for vibrational stability of a lattice.  The 
vanishing of elastic constants then corresponds to the phenomenon of soft phonon modes in 
lattice dynamics.  Indeed one finds that under sufficient deformation such soft modes do 
occur in a homogeneously strained lattice.  To see the lattice dynamical manifestation of 
this condition, we apply molecular dynamics to relax a single crystal sample with periodic 
boundary condition at essentially zero temperature for a specified deformation at constant 
strain.  The resulting atomic configurations are then used to construct and diagonalize the 
dynamical matrix.  Fig. 2 shows two sets of dispersion curves for the Lennard-Jones 
interatomic potential describing Ar which has fcc structure, one for the crystal at 
equilibrium (for reference) and the other when the lattice is deformed under a uniaxial 
tensile strain of 0.138 which is close to the critical value [23].  One can see in the latter a 

'Γ -point soft mode in the [011] direction.  Similar results for deformation under shear or 
hydrostatic tensile strain would show soft modes 'Γ -point in the [111] direction and Γ -
point in the [100] direction respectively.  All these are acoustic zone-center modes, 
therefore they would correspond to elastic instabilities.  For a more complicated lattice 
such as SiC in the zinc blende structure,  one would find that soft modes also can occur at 
the zone center [23].  The overall implication here is that lattice vibrational analysis of a 
deformed crystal offers the most general measure of structural instability, and this again 
demonstrates that strength is not an intrinsic property of the material, rather it depends on 
the mode of deformation. 
 
2.3  Microstructural Effects 
 
 



 
 Fig. 1 is a typical stress-strain response on which one can conduct very detailed 
analysis of the deformation using the atomic configuration available from the simulation.  
This atomic-level version of structure-property correlation can be even more insightful than 
the conventional macroscopic counterpart simply because in simulation the microstructure 
can be as well characterized as one desires.  As an illustration we repeat the deformation 
simulation using as initial structures other atomic configurations which have some 
distinctive microstructural features.  We have performed such studies on cubic SiC (3C or 
beta phase) .which has zinc-blends structure, using an empirical bond-order potential [24] 
and comparing the results for a single crystal and prepared amorphous and nanocrystalline 
structures.[23]  Fig. 3 shows the stress-strain response for under hydrostatic tension at 
300K.  At every step of fixed strain, the system is relaxed and the virial stress evaluated.  
Three samples are studied, all with periodic boundary conditions, a single crystal (3C), an 
amorphous system that is an enlargement of a smaller configuration produced by 
electronic-structure calculations [25], and a nanocrystal composed of four distinct grains 
with random orientations (7810 atoms).  As in Fig. 1, the single-crystal sample shows the 
expected linear elastic response at small strain up to about 0.03; thereafter the response is 
nonlinear but still elastic up to a critical strain of 0.155 and corresponding stress of 38 GPa.  
Applying a small increment strain beyond this point causes a dramatic change with the 
internal stress suddenly reduced by a factor of 4.  Inspection of the atomic configurations 
(not shown) reveals the nucleation of an elliptical microcrack in the lattice along the 
direction of maximum tension.  With further strain increments the specimen deforms by 
strain localization around the crack with essentially no change in the system stress. 
 The responses of the amorphous and nanocrystal SiC differ significantly from that 
of the single crystal.  The former shows a broad peak, at about half the critical strain and 
stress, suggesting a much more gradual structural transition.  Indeed, the deformed atomic 
configuration reveals channel-like decohesion at strain of 0.096 and stress 22 GPa.  
Another feature of the amorphous sample is that the response to other modes of 
deformation, uniaxial tension and shear, is much more isotropic relative to the single 
crystal, which is perhaps understandable with bonding in SiC being quite strongly covalent 
and therefore directionally dependent.  For the nanocrystal, the critical strain and stress are 
similar to the amorphous phase, except that the instability effect is much more pronounced, 
qualitatively like that of the single crystal.  The atomic configuration shows rather clearly 
the failure process to be intergranular decohesion.  These observations allow us to correlate 
the qualitative behavior of the stress-strain responses with a gross feature of the system 



microstructure, namely, the local disorder (or free volume).  This feature is of course 
completely absent in the single crystal, well distributed in the amorphous phase, and 
localized at the grain boundaries in the nanocrystal.  The disorder can act as a nucleation 
site for structural instability, thereby causing a reduction of the critical stress and strain for 
failure.  Once a site is activated, it will tend to link up with neighboring activated sites, thus 
giving rise to different behavior between the amorphous and nanocrystal samples. 
 
3.  Mechanistic Aspects (Kinetics) of Melting 
  
 In 1939 Born set forth a simple criterion for crystal melting by postulating that 
melting should be accompanied by the loss of shear rigidity.[26]  Expressed in terms of the 
shear modulus G for a cubic crystal, the melting point Tm is that temperature at which 
 
      G(Tm) = 0    (12) 
 
A year later he extended this stability concept to lattice deformation [4] by deriving the 
conditions for mechanical stability which in the case of cubic crystals are given by 
 
       C11 + 2C12 > 0,   C11 - C12 > 0,   C44 > 0  (13) 
 
These can be obtained from stability criteria, (11), derived in Sec. 2.1 under the condition 
of no external stress.  In this section we will examine the basis on which Born's two criteria 
may be considered to be valid.  Shortly after (12) was proposed, experimental results 
obtained on NaCl single crystals were presented showing that the two shear constants, C44 
and (C11 - C12), have nonzero values at the melting point.[27]  Moreover, it was not clear 
how this criterion could explain the existence of latent heat and volume change in a first-
order thermodynamic phase transition.  In contrast, the stability criteria (13) seem to be 
generally accepted, with neither stringent tests having been performed nor qualifications 
concerning its possible limitations discussed.  The challenge of ascertaining whether such 
criteria are capable of predicting the actual onset of an instability is considerable.  The 
difficulty, on the theoretical side, has been that stability analyses have been formulated in 
different ways [6,7], and few explicit calculations of elastic constants at the critical 
condition have been reported to make possible an unambiguous test.  On the experimental 
side, competing effects frequently render the determination of the triggering instability 
uncertain.  Thus, while the shortcomings of (12) are well known, the use of (13) to define 
structural resistance to thermal agitation has gone unnoticed. 
 
3.1  Mechanical Melting – Limit of Metastability 
 
 Our interest here is to test (13) through molecular dynamics simulation of melting 
instead of testing (12) using experimental data.  By performing simulation of isobaric 
heating to melting at zero pressure of a perfect crystal without surfaces or defects of any 
kind, we achieve an unambiguous test since without an external stress (13) would be 
equivlent to (11).  As we will see below, simulation shows that at the onset of melting one 
of the shear constants indeed vanishes, although it is (C11 - C12) rather than C44.  The 
observed melting temperature, or equivalently the critical lattice strain, is in remarkable 
agreement with the predictions based on the stability criteria.  Since the system is initially a 
defect- and surface-free lattice, the homogeneous melting observed here is to be 
distinguished from the conventional melting which is a free-energy based heterogeneous 
process of nucleation and growth.  The latter process, if not kinetically suppressed in 
simulation by eliminating all defects and surfaces, would set in at a lower temperature,  the 



conventional melting point of the material, and preclude the melting process associated 
with an elastic instability.  Allowing for these modifications, the melting and stability 
criteria proposed by Born are reconciled.  The qualification which is nontrivial is that the 
concept of thermoelastic mechanism of melting indeed applies to a form of melting, but it 
is melting in the sense of mechanical stability against thermal excitation as opposed to the 
conventional thermodynamic process which is always defect mediated and therefore 
heterogeneous. 
 Given that the generalized criteria (11) obviously reduce to Born's results in the 
limit of zero load, then (13) is a valid description of lattice stability in the special case of a 
cubic crystal being heated to melting at zero pressure.  For the simulation we use an 
interatomic potential model for Au [28] (details of the potential are of no interest in this 
discussion) and a simulation cell containing 1372 atoms with periodic border conditions 
imposed in the manner of Parrinello and Rahman.[29]  A series of isobaric-isothermal 
simulations (with velocity rescaling) are carried out at various temperatures.  At each 
temperature the atomic trajectories generated are used to compute the elastic constants at 
the current state using appropriate fluctuation formulas.[30] 
 

 
 Fig. 4 shows the variation with temperature of the lattice strain a/ao along the three 
cubic symmetry directions.[31]  The slight increase with increasing temperature merely 
indicates the lattice is expanding normally with temperature, and the results for the three 
directions are the same as they should be.  At T = 1350 K one sees a sharp bifurcation in 
the lattice dimension where the system elongates in two directions and contracts in the 
third.  This is a clear sign of symmetry change, in the present case from cubic to tetragonal.  
To see whether the simulation results are in agreement with the prediction based on (7), we 
show in Fig. 5 the variation of the elastic moduli with temperature, or equivalently the 
lattice strain since there is a one-to-one correspondence as indicated in Fig. 3; the three 
moduli of interest are the bulk modulus BT = (C11 + 2C12)/3, tetragonal shear modulus G' = 
(C11 - C12)/2, and rhombohedral shear modulus G = C44.   On the basis of Fig. 4 one would 
predict the incipient instability to be the vanishing of G', occurring at the theoretical or 
predicted lattice strain of (a/ao)th = 1.025.  From the simulation at T = 1350 the observed 



strain is (a/ao)obs = 1.024.  Thus, we can conclude that the vanishing of tetragonal shear is 
responsible for the structural behavior. 
 For more details of the system behavior at T = 1350 K we show in Fig. 6 the time 
evolution of the lattice strain, the off-diagonal elements of the cell matrix H, and the system 
volume.  It is clear from Fig. 6(a) that the onset of the G' = 0 instability triggers both a 
shear (cf. Fig. 6(b)) and a lattice decohesion (Fig. 6(c)), the latter providing the 
characteristic volume expansion associated with melting.  This sequence of behavior, 
which has not been recognized previously, implies that the signature of a first-order 
transition, namely, latent volume change, is not necessarily associated with the incipient 
instability.  Our results also provide evidence supporting Born's picture of melting being 
driven by a thermoelastic instability [26], later reinterpreted by Boyer [32] to involve a 
combination of loss of shear rigidity and vanishing of the compressibility.  Moreover, it is 
essential to recognize that this thermoelastic mechanism can only be applied to the process 
of mechanical instability (homogeneous melting) of a crystal lattice without defects, and 
not to the coexistence of solid and liquid phases at a specific temperature (heterogeneous 
melting).[33,34] 
 It is perhaps worthwhile emphasizing again what the combination of stability 
analysis and molecular dynamics simulation has contributed to the understanding of Born's 
two criteria.  That the stability criteria (13) are valid only under vanishing external load is 
quite clear, both theoretically and in simulation studies.  Since it is often advantageous to 
be able to predict a priori the critical stress or strain for the onset of instability, the 
availability of (11) could facilitate more quantitative analysis of simulation results.  
Although our results for an fcc lattice with metallic interactions show that homogeneous 
melting is triggered by G' = 0 and not (6), nevertheless, they constitute clear-cut evidence 
that a shear instability is responsible for initiating the transition.  The fact that simulation 
reveals a sequence of responses apparently linked to the competing modes of instabilities 
(cf. Fig. 6) implies that it is no longer necessary to explain all the known characteristic 
features of melting on the basis of the vanishing of a single modulus.  In other words, 
independent of whether G'=0 is the initiating mechanism, the system will in any event 
undergo volume change and latent heat release in sufficiently rapid order (on the time scale 
of physical observation) that these processes are all identified as part of the melting 
phenomenon.  Generalizing this observation further, one may entertain the notion of a 
hierarchy of interrelated stability catastrophes of different origins, elastic, thermodynamic, 
vibrational, and entropic.[35] 
 Finally it may be mentioned that in several studies over the last few years ,  the 
stability criteria (11) have lead to precise identifications of the elastic instability triggering 
a particular structural transition.  In hydrostatic compression of Si, the instability which 
causes the transition from diamond cubic to β − tin structure is the vanishing of G'(P) = 
(C11 - C12 - 2P)/2.[19]  In contrast, compression of crystalline SiC in the zinc blende 
structure results in an amorphization transition associated with the vanishing of G(P) = C44 
- P.[22]  This is discussed further in the next section.  For behavior under tension, crack 
nucleation in SiC [20] and cavitation in a model binary intermetallic [21], both triggered by 
the spinodal instability, vanishing of BT(P) = (C11 + 2C12 + P)/3, are results which are 
analogous to the observations reported here.  Notice also that in the present study a 
crossover from spinodal to shear instability can take place at sufficiently high 
temperature.[9] 
 
3.2  Thermodynamic Melting 
 
 In the preceding simulations we encountered a melting transition which occurred in 
a perfect crystal that has no surfaces, because the MD simulation was carried out with 



periodic boundary conditions.  A critical temperature was reached at which a bifurcation 
took place with the cubic simulation cell suddenly becoming tetragonal, and the shear 
modulus G' vanished.  The system responses triggered by this event, along with the atomic 
configurations, all show that the crystal has melted in a homogeneous manner; it may seem 
logical to thus conclude that the critical temperature is the melting point of the material.  
However, such an interpretation would prove to be hasty.  We now show that when the 
heating-to-melting simulation is applied to a crystal with an initial defect such as a free 
surface or an interface, the crystal-to-liquid transition then occurs through a defect-
nucleated process at a temperature lower than the critical temperature previously observed.  
Thus there exist two types of melting transitions, a heterogeneous process of nucleation and 
growth which corresponds to the conventional melting phenomenon, and a homogeneous 
process of mechanical collapse of the lattice.  Henceforth we will refer to the two as 
thermodynamic and mechanical melting respectively, with corresponding melting points 
denoted as Tm and Ts.  While the significance of the former needs no comment, the latter is 
much less well recognized.  We have seen that Ts is the highest temperature at which the 
crystal can remain structurally stable.  Since Tm is always lower than Ts, the region Tm < T 
< Ts is the temperature range of superheating.  It also follows that in this region the crystal 
is in a metastable state, or in others words, Ts is the upper limit of metastability, and in a 
sense the thermal analogue to the ideal strength of the crystal.  
 Despite the extensive efforts in studying the phenomenon of melting [36] certain 
aspects of this fundamental transition were not clarified until recently.  One basic question 
that was raised [37] is the role of surfaces or interfaces in the mechanism of melting.  From 
the standpoint of thermodynamics, melting occurs at the temperature at which the solid and 
liquid phases coexist, as expressed by the equality of the Gibbs free energies.  However, 
thermodynamics says nothing about how melting occurs, or how long the process will take.  
These are issues pertaining to the kinetics of the phenomenon.  Thus one can ask whether 
our thermodynamic picture of melting is one which is consistent with the kinetics [38].  
This is a question that can be addressed by molecular dynamics simulation in that 
simulation provides a method to calculate the free energies of the solid and liquid phases 
[40, 41], as well as to directly observe the actual melting process at the molecular level [38, 
42]. 
 In any simulation study of melting it is essential to recognize that the melting point 
of the simulation model,  Tm , can be quite different from the known melting point of the 
real substance.  How well these two temperatures agree is, in fact, a useful indication of 
how realistic is the interatomic potential function on which the model is based.  We will 
examine the question of the interplay between thermodynamics and kinetics in the 
particular case of a simulation model of silicon based on the empirical potential model 
developed by Stillinger and Weber [39].  For this potential  free energy calculations have 
been reported by Broughton and Li [40] which gives the melting point Tm at 1691 ±  30 K.  
Given that the experimental melting point is 1683 K, the excellent agreement between 
'theory' and experiment should be regarded as somewhat fortuitous. 
 Once Tm for the model is known, one then has the proper reference temperature 
from which to investigate the onset of melting.  By taking a perfect crystal model of 
silicon, composed of 704 atoms in a cell with periodic boundary conditions, and heating it 
up to Tm using MD, it is found that over a reasonable period of simulation the system 
shows no indications of any onset of structural disordering.  This apparent stability persists 
up to temperatures well beyond Tm ; it is only when T reaches 2500 K that the crystal is 
observed  to suddenly undergo significant disordering over a period of 0.18 ps.  These 
simulation results are perplexing at first sight.  Why did the simulation model not melt at 
Tm as predicted by thermodynamics?  Should the disordering at 2500, hereafter denoted as 
Ts be interpreted as the onset of melting? 



 To answer these and other questions, another set of simulations is performed using 
a simulation cell which has free surfaces in one direction, and periodic border in the other 
two directions.  The important point to note is that we are now going to interpret the 
temperature of 2500 K when the crystal collapsed as the mechanical melting temperature Ts 
.  Since the crystal cannot remain stable this point, there is no reason to do any simulation 
at temperatures above Ts .  So the foregoing simulations are useful in arriving at this upper 
limit.  We can therefore regard Ts  as the 'theoretical strength' against thermal agitation 
(heating), just like the theoretical strength σc  against mechanical deformation which we 
have discussed in Sec. 2.1. 
 The simulation runs in the case of a free surface are made in the temperature range 
above what we think should be the value of Tm as given by the free-eneergy calculation, but 
always below Ts .  It is observed that structural disordering, which has all the features of 
local melting, begins invariably at the surface and then spreads toward the interior of the 
simulation cell.  For a quantitative measure of the local disorder, we divide the cell into 
equal slices along the direction of the surface normal, and calculate the static structure 
factor S(K )  for each individual slice, with K  chosen to be a reciprocal lattice vector with 
orientation parallel to the surface.  From the profile of S(K )  obtained at various intervals 
during the simulation, we can locate the melt-crystal interface, and by following this 
interface in time we determine its velocity of propagation v(T) at a fixed temperature T.  
This procedure can be repeated for several temperatures to arrive at a temperature variation 
of the interfacial velocity.  One can now ask what is the temperature at which the interface 
no longer moves. 
 As shown in in Fig. 7, the five data points in our particular study extrapolate to a 
temprature of 1710 K at zero interface velocity.  The meaning of this extrapolation is 
simple but well worth appreciating.  When the velocity of the melt-crystal vanishes, it 
clearly means that the two phases - the melt (liquid) on the defect side of the interface and 
the crystal on the bulk side - are 'in equilibrium' in the sense that neither side want to 
expand into the other, in other words, the two phases are 'in coexistence'.  This then is the 
operational realization of the thermodynamic definition of crossing of the crystal and liquid 
free-energy curves.  If this argument is valid, then one can expect the extrapolated 
temperature to be the temperature for thermodynamic melting.  We note that 1710 is well 
within the uncertainties in the present study to the free-energy calculation value of 1691, 
which itself has uncertainties estimated to be 30K.    
 Similar studies of defect-induced melting also have been carried out using a 
bicrystal simulation cell representating a grain boundary, and another cell representing a 
crystal with voids of various sizes [38].  In both cases, extrapolation of the melt-crystal 
interface velocity leads to essentially the same value of Tm .  The conclusion which one can 
draw from this series of simulations is that there exist in every material two types of 
melting, thermodynamic and mechanical. 
(i)  Thermodynamic melting at  Tm  requires a surface or other defect nucleaton site for the 
formation of a liquid layer which them propagates into the crystalline bulk at a velocity 
which depends on the degree of supheating.  This process is heterogeneous. 
(ii)  Mechanical melting at Ts (> Tm) is a homogeneous process; it is the uppr limit of 
metastability. 
As a final comment we note that recent studies also have been extended to grain boundaries 
where no premelting has been found although local disordering does take place at T < Tm 
[43].     
 
3.3  Solid-State Amorphization 
 



 When a homogenous, defect-free lattice is driven to structural instability by 
hydrostatic compression, two types of responses generally can be expected.  The crystal 
can undergo a polymorphic transition to another lattice structure, or a transition to a 
disordered state, known as solid-state amorphization.  Molecular dynamics simulations of 
compression loading on Si [19] and cubic SiC (β -phase) [22] using essentially the same 
many-body interatomic interaction model have shown that the former undergoes a 
transition from diamond cubic to β -Sn tetragonal structure, while the latter undergoes 
amorphization.  The behavior of stability criteria in these two studies are shown in Fig. 8, 
where one sees that the two transitions involve different instability modes, the vanishing of 
the tetragonal shear modulus G' and the rhombohedral shear modulus G, respectively.  The 
potential models from which the elastic constants are calculated are of the same bond-order 
form proposed by J. Tersoff for covalent crystals [24].  In both cases, the critical strains 
predicted in Fig. 8 agreed with what was observed in the direct simulations.  The question 
then arises as to what is the underlying cause of the different structural consequences of 
shear instability. 
 It is apparent that an obvious difference between the two lattices is that one is an 
elemental system while the other is a binary (AB) compound.  Thus in SiC there are 
chemical ordering effects which are not present in Si.  Since in the context of chemical 
ordering a distinction is made between atomic size effects and chemical bonding effects, it 
is of interest to assess which effect is more responsible for the observed amorphization.  
For this analysis one can manipulate the description of interatomic interactions to 
intentionally suppress one effect or the other.  Two modified forms of the Tersoff potential 
model have been produced, in one variant chemical bond preference is suppressed through 
an adjustment of the interaction between atoms of different species (model I), and in 
another variant size effects are suppressed by adjusting the bond-order parameter and cross 
interaction at the same time to leave heat of mixing unchanged (model II) [33].  The 
relevant physical properties of the Tersoff potential for β -SiC and its two modifications are 
shown in Table I.  It is clearly seen that elimination of chemical bonding preference has 
little effect (model I), whereas all three elastic constants are significantly altered in the 
absence of atomic size difference.  Although both C11 - C12 and C44 are appreciably reduced, 
the lowering of the former is more drastic such that in model II the instability mode 
becomes the vanishing of G'.  Thus one may deduce that not only is the presence of size 
effects responsible for the rhombohedral shear instability in β -SiC, but also their absence 
allows the tetragonal shear to vanish first in Si.  To explicitly verify that these 
interpretations are correct, a simulation of model II under compression was carried out, 
indeed revealing a transition from zinc-blende to rock salt structure triggered by a 
tetragonal shear instability.  This is an illustration of the use of modified or manipulated 
interatomic interaction in simulation; it can be a potentially very useful device for isolating 
cause-and-effect in probing complex phenomena.  
 We have demonstrated that in terms of the competition between instability modes, 
in this case the vanishing of the two shear moduli, one can gain some insight into the 
underlying nature of polymorphic and crystal to amorphous transitions.  With regard to the 
experimental implications of our results on β -SiC, we note that amorphization of β -SiC 
single crystals induced by electron irradiation have been reported [44], the data revealing 
chemical disordering to take place below a critical temperature of 340 C.  On the other 
hand, the structural transition in β -SiC under compression is found by X-ray diffraction to 
be polymorphic, from zinc-blende to a rock salt-type structure at 100 GPA [45].  The 
reason that the simulation predictions do not match precisely with the experimental 
findings can be attributed to two factors.  First is that the empirical classical interatomic 
potential description is likely not adequate to correctly resolve competing mechanisms 
involving subtle effects of chemical bonding.  Secondly, the role of crystal defects in 



controlling the experimental observations has not been quantitatively assessed, while for 
the simulations one knows for sure that no defects were initially present.  These 
uncertainties aside, it is noteworthy that both amorphization and polymorphic transitions 
have been observed in β -SiC .  Apparently, under the relatively 'gentle' driving force of 
pressure the latter, associated with G'=0,  prevails over the former which entails G=0.  The 
driving force induced by electron irradiation is the destabilizing effect of point defect 
production; under this condition β -SiC undergoes amorphization rather than transforming 
to another crystal structure. 
 Even though in β -SiC pressure-induced amorphization appears to be precluded by 
a polymorphic transition, several experimental studies of this phenomenon in AB 
compounds can be cited to provide further insights into the kinetics of competing 
transitions.  X-ray measurements show that Nb2O5 becomes amorphous at 19.2 GPa at 300 
K which is novel because the oxide is simultaneously reduced in the process [46]; the 
competing polymorphic transition is believed to be kinetically impeded.  In BAs a 
transformation from zinc blende to amorphous structure was observed at 125 GPa, just 
slightly above the calculated equilibrium transition pressure to the rock salt phase, and 
interpreted as signifying a kinetically frustrated process [47].  In more complicated 
systems, such as CaSiO3 an MgSiO3 perovskites, it has been conjectured that stress-
induced amorphization arises from the near simultaneous accessibility of multiple modes of 
instability [48].  The amorphization of α − quartz  (SiO2) under pressure is a particularly 
well-known case where molecular dynamics simulation gives a transition pressure in 
agreement with experiment [49].  The physical mechanism underlying the elastic instability 
was first identified as the softening of a phonon mode [50]; later a dynamic instability 
associated with a soft phonon mode at one wave vector was found [51].  These 
developments are not surprising in view of our discussions in Section 2.  It is interesting 
that the dynamic instability in α − quartz  precede the elastic instability, occurring at 21.5 
GPa and 25 GPa respectively. 
 
4.  Single Dislocation Dynamics 
 

Dislocations, being the carriers of crystal plasticity, play a fundamental role in any 
consideration of lattice deformation [52].  For an overview of current atomistic and 
mesoscale studies of single and multiple dislocations, one may refer to a survey by Bulatov 
and Kubin.[53]  Here we will discuss rather briefly two problems concerning single 
dislocation mobility to illustrate the kind of mechanistic issues of interest in this active area 
of simulation research.  The first is an-going MD investigation of edge dislocation motion 
in a metal.  This will show the information that direct atomistic simulation can provide.  
The second problem, an example of multiscale modeling, is the simulation of the 
dislocation velocity in a semiconductor using a kinetic Monte Carlo approach with kink 
activation energies determined by atomistic calculations.     
 
4.1  MD simulations 
 
 We are presently conducting MD simulation of moving a pair of edge dislocations 
in a single crystal of bcc Mo by applying a shear stress [54].  The interatomic potential we 
use is an effective-medium approximation proposed by Finnis and Sinclair.[55]  The set-up 
of the simulation cell and the application of stress are described in Fig. 9 .  Because of the 
use of periodic boundary conditions, the edge dislocation appears as a dipole.  The 
geometry is such that the two dislocations are arranged to glide on the {112} plane under 
an applied shear stress σ xy .  A method of comparing relative registry of atoms on two 
adjacent rows is used to locate the dislocation core during its glide.  The dislocation profile, 



shown in Fig. 10, suggests that while double kink nucleation is quite predominant, there is 
very little kink spreading or migration.  
 
 The stress and temperature dependence of the resulting dislocation velocity are 
shown in Figs. 11 and 12 respectively.  In Fig. 11 the simulation results at 77K are seen to 
lie in the high-stress high-velocity region, while the experimental data are available only in 
the low-stress and low-velocity regime.  The inset is a plot of the experimental dislocation 
velocity of KBr where a sharp increase of the velocity with increasing stress has been 
observed.  Thus there is some basis for anticipating that the experimental curve for Mo will 
join onto the simulation results.  The temperatue dependence of the drag coefficient is 
shown in Fig. 12.  From the increase of the drag coefficient with temperature one can 
conclude that the dislocation mobility is governed by the phonon drag mechanism. 
 
4.2  Mesoscale Modeling     
 
 Covalent bonding in silicon and other semiconductors gives rise to a high barrier to 
dislocation motion [55].  To quantify this behavior in terms of the underlying atomistic 
mechanisms, much theoretical effort has been expended on obtaining accurate activation 
parameters for kink nucleation and migration.  However, despite the recent progress and a 
considerable body of experimental observations, how dislocations actually move from one 
Peierls valley to another under stress is still an open question.  The fundamental difficulty 
is that interpretation of the available data has been hampered by the lack of a theoretical 
description which is sufficiently free of ad hoc assumptions and capable of relating 
dislocation mobility behavior to the underlying kink mechanisms. 
 We consider here such a description by adopting a kinetic Monte Carlo treatment of 
kink nucleation, migration and annihilation processes along with full elastic interactions 
between the dissociated partial dislocations [56].  The formulation is designed to produce 
the overall dislocation movement as the cumulative effect of a large number of individual 
kink events, requiring for input only the kink formation and migration energies available 
from atomistic calculations [57].  Using this model we show that current atomistic data on 
activation energies give the velocities of a dissociated screw dislocation which bracket the 
experimental data; in the process we obtain bounds on the values of the activation energies 
to guide future studies.  In focusing on the variation of dislocation velocity with applied 
stress, we show that the coupling between the two dissociated partials can be characterized 
in terms of compatibility between the strong Peierls barrier and the combined action of the 
stacking fault attraction and the elastic repulsion between dislocation segments which also 
influences the average separation distance between the partials Xo. 
 We identify two compatibility scenarios of particular interest, when Xo is an 
integral or half-integral multiples of the period of the Peierls barrier, and demonstrate that 
these two conditions give rise to distinct velocity variations with stress.  When the average 
separation is commensurate with the period (integral Xo), the dislocation mobility is low at 
low stress and increases super-linearly below a critical stress value.  In the case when Xo is 
half-integral, no threshold behavior is observed and the velocity is essentially linear in the 
stress.  Both types of variations have been observed experimentally.  Previous attempts to 
rationalize the threshold behavior have resulted in the postulate of a random distribution of 
weak obstacles or ``dragging points'' on the dislocation line [58-60], a notion which we are 
able to clarify with the present description. 
 Our model deals with a screw dislocation with Burger's vector (a / 2)[11 0]  
dissociated into two 30o partials in the (111) plane.  Each partial is represented by a 
piecewise straight line composed of alternating horizontal (H) and vertical (V) segments.  
The length of H-segments can be any multiple of , while the V-segments are all of the same 



length, the kink height h.  The stacking fault bounded by the two parallel partials has a 
width measured in multiples of h.  The simulation cell is oriented with the partials running 
horizontally so that periodic boundary condition can be applied in this (z) 
direction.  The dislocation glides in the vertical direction, upward being along < 112 >  (x), 
as a result of co-migration of the two partials which in turn follows from the elementary 
kink events. 
 In each simulation step, a stochastic sampling is carried out to determine which 
event will take place next: a kink pair nucleation on the H-segments in the upward 
(downward) direction or a kink (V-segment) translation to the left (right) by an amount b.  
The rates of these elementary events are calculated based on the energetics of the 
corresponding kink mechanisms.  For example, for a kink pair nucleation mechanism three 
energy terms are considered, a formation energy obtained by relaxing the atomic 
configuration of the kink pair using an empirical potential or first principles methods, an 
energy bias which favors the reduction of the stacking-fault area, and the elastic interaction 
between a given segment and all the other segments and applied stress (so-called Peach-
Koehler interaction). Accordingly, the nucleation rate for an embryonic 
double-kink (width one b) on a partial with Burgers vector bp  and under stress σ ij  is 
calculated as 
 

   jkp = ωo exp −
Ek + (±γ SF − σ:bp )A / 2

kBT
 

 
  

 
    (14) 

 
whereωo  is the pre-exponential ``frequency'' factor, which we set equal to the Debye 
frequency.  γ SF  is the stacking fault energy, with '+' or  '-' sign for the leading and trailing 
partials respectively.  A is the area swept out by the dislocation during kink pair nucleation, 
with``$+$'' or ``$-$'' sign for upward or downward nucleation respectively.  The factor of 
1/2 appears because we assume that in the saddle point configuration the dislocation has 
swept out half of the total area A.  kB is the Boltzmann's constant and T is the temperature.  
Similar expressions, with appropriate modifications, hold for the kink migration rates.  The 
remaining barrier terms, such as Ek, are imported directly from atomistic simulation data.  
 We will rely on atomistic calculations to provide values for the kink formation and 
migration energies.  Based on various calculated and experimental estimates available at 
present, a reasonable set of values to take for (Ek and Wm) would be around (0.7 eV, 1.2 
eV).  The dslocation velocity results obtained by using the kinetic Monte Carlo method just 
described are shown in Fig. 13 (solid line) along with two sets of experimental data (open 
symbols) [61,62].  In Fig. 13 we show the comparison of predicted stress dependence of the 
dislocation velocity at T = 1000 K, the open symbols, circles and diamonds, refer to the 
data of Imai and Sumino [62] and George [61] respectively, whereas the closed symbols 
denote the kinetic Monte Carlo simulations.  One can see that depending on whether Xo  
has integral or half integral value, the velocity varies smoothly (circle symbols) or shows a 
starting stress behavior (diamonds) [56].  
 
 5.  Atomistics of Crack Propagation 
 
 A crystal is said to be intrinsically brittle if an existing crack is able to propagate 
along a crystallographic plane in a cleavage manner when the solid is under stress.  If a 
material is intrinsically brittle, then it is capable of undergoing a transition to ductile 
behavior, emission of dislocations with crack-tip blunting, at a characteristic temperature 
TBD.  This transition has been and continues to be a formidable challenge to our theoretical 
understanding of fracture mechanics.  In this section we will describe two atomistic 



simulation studies of crack-tip extension, first a demonstration that brittle-ductile transition 
can be observed in a dynamical scenario, then followed by a characterization of dislocation 
emission in the stress field at a crack tip.     
  
5.1  Brittle-Ductile Transition 
 
 Before discussing the simulation of brittle-to-ductile transition we consider first the 
set up of the simulation cell containing a crack tip.  Fig. 14 shows a schematic of a 
macroscopic elastic body containing an atomically sharp crack of length 2c subject to an 
uniaxial tensile loading σ .  If we focus on a small region containing one of the crack tips, 
then we have a simulation cell composed of N atoms (N is around 4000 in the study we 
will discuss).  It is understood that the cell is large enough that the region beyond the cell 
border can be reasonably well treated as an elastic continuum.  Thus we can throw away 
the elastic medium beyond the border and represent the effects of this medium on the 
interior atoms by a traction imposed at the cell border [63].  For the third direction, that 
coming out of the plane of the paper, we will use periodic boundary condition, so the 
problem is one of plane strain.  To demonstrate that this treatment of the border condition 
does not introduce appreciable numerical artifact, we first study the simpler problem of 
determining the critical stress for cleavage fracture. 
 It is well known in fracture mechanics that the Griffith criterion provides a good 
overall estimate of this critical stress.  In the case of an anisotropic lattice the criterion takes 
the form [64], 
 
 KIG = 2γ {(s11s22 / 2)1/ 2[(s22 / s11 )1/ 2 + (2s12 + s66 ) / 2s11]1/ 2 }−1 /2   (15) 
 
where KIG denotes the critical value of the stress intensity factor for pure tensile loading 
(mode I), sij are the compliance constants with indices 1, 2, and 6 referring to the directions 
of plane strain, crack propagation (normal to crack front), and normal of the crack plane, 
respectively.   In essence this result is a consequence of imposing the equilibrium condition 
between strain-energy release rate and twice the surface energy of the crack surface [65].  
The Griffith condition has been tested in a number of simulation studies on crack 
propagation, with varying results.  We have shown that it is satisfied to within about 5% for 
three different crack-tip configurations [66].  This is a significant improvement over 
previous studies which found deviations from the Griffith condition ranging from 20% to a 
factor of 3; it is achieved through a combination of better treatment of border conditions, 
taking into account crystal anisotropy, and more careful handling of the numerical data. 

 Fig. 14 shows the MD simulation results on Feα − , obtained using an Embedded-
Atom-Method potential, .  On the left hand side one sees the development of a crack tip 
under mode I loading at 10% above the Griffith critical value KIC after simulation at the 
indicated temperature for 3000 time steps.  Except for the different temperatures, all three 
simulations are identifical.  In the simulation at T = 300 K the crack has advanced in a 
cleavage manner (crack tip position at t = 0 is indicated by the cross) with a smooth crack 
surface profile.  The middle result at T = 400 K is quite different; here one sees a 
significant deformation in the upper part of the crack surface.  This is a signature of plastic 
deformation or dislocation emission.  At T = 500 K the deformation at the crack tip is so 
severely that the crack has blunted and is opening up rather than moving forward (to the 
right).  These results constitute the direct observation of a crack tip undergoing a brittle-to-
ductile transition [67].  The right hand side of Fig. 14 shows what happens if one continues 
the simulation at T = 500 K out to longer times.  One sees that at time step 5000 a step 
appears in the upper border of the simulation cell.  This step is created by the movement of 
a dislocation from the crack tip up to the border. 



5.2  Crack Tip Plasticity 

 
 In the context of understanding materials strength from a multiscale point of view, 
crack-tip plasticity is a problem that can benefit significantly from the linking of different 
simulation techniques [68,69].  A central issue that should be resolved at the atomistic level 
is under what condition a dislocation will be emitted at the crack tip; this is a process that 
can be realistically captured by MD simulation.  At the microstructure level, questions 
concerning the distribution of dislocations in the plastic zone ahead of the crack tip and 
their shielding effects on crack extension are particularly relevant.  These problems are 
more properly treated by mesoscale simulation techniques such as discrete dislocation 
dynamics (DDD) and finite-element method (FEM). 
 
 The process of dislocation nucleation at a crack tip is a fundamental problem in the 
mechanical behavior of stressed crystalline solids at finite temperatures, particularly in the 
context of understanding the brittle-to-ductile transition [70,71].  Because the crack-tip 
region is inherently nonlinear and extends over essentially molecular dimensions, the 
problem would appear to be ideally suited for atomistic simulation [66,67].  From the 
standpoint of continuum analysis, criteria for predicting brittle or ductile behavior [71,72] 
are usually based on the concept of the energy-release rate (actually an energy per unit 
area) for cleavage decohesion, Gcleav, and dislocation nucleation, Gdisl.  A ductile material is 
then characterized by Gdisl < Gcleav, where Gcleav = 2 γ  , the energy of the two crack 
surfaces [65].  Recent progress has been achieved by introducing an interplanar potential 
associated with rigid block sliding in a homogeneous lattice [71]  Using heuristic models 
for this potential, which is equivalent to specify the stress-displacement constitutive 
relation on the slip plane, the critical configurations for dislocation nucleation from the 
crack tip can be calculated, and in this manner estimates of the brittle-to-ductile transition 
temperature can be made [73,74]. 
 
 In a 3D MD simulation of a microcrack in an fcc lattice under tensile loading (plain 
strain mode I) using the Lennard-Jones potential, the process of dislocation emission from 
a crack tip has been isolated, and an appropriate stress-displacement relation extracted from 
the atomic-level displacement and stress fields [75].  The geometric setup, with (221) being 
the crack plane, is shown at the top of Fig. 15.  The simulation cell dimensions are 3a, 60a, 
and 120a in the x-, y-, and z-directions respectively (86,400 atoms), with lattice parameter 
a = 1.56σ  , σ  being the length parameter in the potential.  Periodic conditions are imposed 
in the x- and y-directions, while surface traction is applied on the z-borders.  Simulations 
are carried out at very low temperatures. 
 In the lower left part of Fig. 15 we show an instantaneous atomic configuration 
during simulation in which one can see that the crack tips have not advanced from their 
initial positions (shaded region), while two stacking faults on the (111) planes at θ = 54.7o  
have propagated into the bulk.  At one end these stacking-fault strips are bounded by a 
moving partial dislocation, with Burgers vector b = [112]/6 and φ = 0o ; at the other end 
they are bounded by a step on the (221) crack surface.  This result demonstrates that MD 
simulation is able to capture the dynamic process of dislocation emission, including the 
nucleation from the crack tip and the motion away from the crack. 
 The atomistic results that are most relevant to continuum model formulation are not 
the atomic positions given by the simulation, rather they are the shear and opening 
displacements, δr  and δθ  , which are components obtained by decomposing the atomic-
level displacement field along the slip plane, as indicated in the lower inset in Fig. 15.  In 
the lower right part of the figure we show the variations  of displacements δr  with position  



r (see the schematic at the top) at various durations of simulation.  At any given simulation 
time during slip along the (111) plane, δr  decreases monotonically with increasing r; this is 
to be expected since shear displacement should be the largest just  in front of the crack tip.  
As time increases, all the displacements are seen to increase; however, once δr  reaches a 
value of b, the dislocation core has moved past that particular atomic site, therefore no 
further displacement occurs at that site. 
  
 Knowledge of the instantaneous atomic positions allows one to calculate the 
internal stress field, either from its mechanical definition of force across a plane which is a 
tedious task, or from the virial expression for the atomic-level stress [76 ].  While the latter 
method is considerably simpler, its validity in the immediate vicinity of a structural 
inhomogeneity is open to question.  Once the stress field is determined, it can be resolved 
into shear and tensile components, τ  and σ , on the slip plane.  With the resolved 
displacement and stress components in hand, one can cross plot and thus generate shear and 
tensile stress-displacement curves, τ(δ r ) and σ(δθ ).  Various τ(δ r ) results obtained at 
different distances between the crack tip and the dislocation are shown in Fig. 15. 
 
 In contrast to the present direct determination of the shear stress-displacement 
relation, one can assume a certain form for τ(δ r ) and fit the parameters to any known 
property.  As a simple approximation Rice proposed to take for τ(δ r ) the Frenkel-Peierls 
sinusoid, and moreover, identified its integrated area between δr =0 and the first zero of 
τ(δ r )  with a quantity γ us , which he called the "unstable-stacking-fault energy", given by 
the maximum energy encountered during the rigid-block like sliding along the slip plane of 
one half of a perfect crystal relative to the other [71].  This approximation implies that the 
actual nonuniform displacement field on the slip plane in the presence of a nucleating 
dislocation may be replaced by a uniform displacement distribution corresponding to the 
rigid-block sliding.  For further discussions of using the results of Fig. 15 to examine the 
validity of the approximation, the interested reader should see ref [75]. 
 
6.  An Outlook on Multiscale Materials Modeling 
 

Multiscale materials modeling has emerged as a significant concept in 
computational materials research.  We examine several case studies which seek to provide 
understanding of mechanical behavior of solids at the atomistic level, in the context of 
upper and lower limits to strength and deformation, the interplay between melting and 
stability criteria, the competition between  pressure-induced polymorphism and 
amorphization, the role of kink mechanism in dislocation mobility, and the concept of a 
local free energy as an invariant measure of defect driving force.  Through these 
illustrations we express the optimistic belief that further pursuits of this kind would be 
worthwhile. 

 
References 
 
[1] Report of the National Workshop on Advanced Scientific Computing, July 30-31, 
1998 (National Academy of Sciences), available from  
http://www.er.doe.gov/production/octr/mics/index.html 
[2] Special Issue of J. Computer-Aided Mater. Design, vol. 3, (1996); special issue of 

Current Opinion in Solid State and Mater. Sci., vol. 3, no. 6 (1998). 
[3] G. H. Campbell et al., Mater. Sci. Eng. A251, 1 (1998). 
[4] M. Born, Cambridge Philos. Soc. 36, 160 (1940). 



[5] M. Born and K. Huang, Dynamical theory of Crystal Lattices (Clarendon, Oxford, 
1956). 

[6] R. Hill, Math. Proc. Camb. Phil. Soc. 77, 225 (1975). 
[7] R. Hill and F. Milstein, Phys. Rev. B 15, 3087 (1977). 
[8] A. Kelly and N. H. Macmillan, Strong Solids  (Clarendon, Oxford, 1986), 3rd ed.. 
[9] J. Wang, J., Li, S. Yip, S. Phillpot, D. Wolf, Phys. Rev. B 52, 12627 (1995). 
[10] Z. Zhou and B. Joos, Phys. Rev. B 54, 3841 (1996).. 
[11] J. W. Morris and C. R. Krenn, Philos Mag. A 80, 2827 (2000). 
[12] J. W. Gibbs, in The Scientific Papers of J. Willard Gibbs, Vol. 1:  Thermodynamics 

(Ox Bow Press, Woodbridge, Conn. 1993), p. 55. 
[13] J. W. Morris et al.    
[14] D. C. Wallace, Thermodynamics of Crystals, Wiley, New York (1972). 
[15] T. H. K. Barrons and M. L. Klein, Proc. Phys. Soc 85, 523 (1965). 
[16] W. G. Hoover, A. C. Holt, D. R. Squire, Physica 44, 437 (1969). 
[17] Basinski ??.. cited in Zhou and Joos [11]  --- LJ attention !! 
[18] J. Wang, S. Yip, S. Phillpot, D. Wolf, Phys. Rev. Lett. 71, 4182 (1993). 
[19] K. Mizushima, S. Yip, E. Kaxiras, Phys. Rev. B 50, 14952 (1994). 
[20] M. Tang and S. Yip, J. Appl. Phys. 76, 2716 (1994). 
[21] F. Cleri, J. Wang, S. Yip, J. Appl. Phys. 77, 1449 (1995). 
[22] M. Tang and S. Yip, Phys. Rev. Lett. 75, 2738 (1995). 
[23] J. Tersoff, Phys. Rev. B 39, 5566 (1989). 
[24] J. Li, Ph.D. Thesis, MIT (2000). 
[25] G. Galli, F. Gygi, A. Catellani, Phys. Rev. Lett. 82, 3476 (1999). 
[26]  M. Born, J. Chem. Phys. 7, 591 (1939). 
[27]  L. Hunter and S. Siegel, Phys. Rev. 61, 84 (1942). 
[28] S. M. Foiles, M. I. Baskes, M. S. Daw, Phys. Rev. B33, 7983 (1986).   
[29] M. Parrinello and A. Rahman, J. Appl. Phys. 52, 7182 (1981).  
[30] J. R. Ray, Comput. Phys. Rept. 8, 109 (1988). 
[31] J. Wang, J. Li, S. Yip, D. Wolf, S. Phillpot, Physica A 240, 396 (1997). 
[32] L. L. Boyer, Phase Transitions 5, 1 (1985). 
[33] J. F. Lutsko, D. Wolf, S. R. Phillpot, S. Yip, Phys. Rev. B40, 2841 (1989). 
[34] D. Wolf, P. R. Okamoto, S. Yip, J. F. Lutsko, M. Kluge, J. Mater. Res. 5, 286.  
[35] J. L. Tallon, Nature (London) 342, 658 (1989). 
[36] A. R. Ubbelohde, Molten States of Matter: Melting and Crystal Structure (Wiley, 

Chichester, 1978). 
[37] R. W. Cahn, Nature 323, 668 (1986). 
[38] S. R. Phillpot, J. F. Lutsko, D. Wolf, S. Yip, Phys. Rev. B40, 2831(1980); S. R. 

Phillpot, S., D. Wolf, Computers In Physics 3, no. 20, p. 20 (1989). 
[39] F. H. Stillinger and T. A. Weber, Phys. Rev. B31, 5262 (1985). 
[40] J. Q. Broughton and X. P. Li, Phys. Rev. B35, 9120 (1987). 
[41] M. de Koning, A. Antonelli, S. Yip, Phys. Rev. Lett. 83, 3473 (2000); J. Chem. 

Phys., submitted. 
[42] J. Solca, A. J. Dyson, G. Steinbrunner, B. Kirchner, H. Huber, Chem. Phys. 224, 

253 (1997). 
[43] T. Nguyen, S. Yip, P. S. Ho, T.  Kwok, C. Nitta, Phys. Rev. B46, 6050 (1992).  
[44] H. Inui, H. Mori, A. Suzuki, H. Fujita, Philos. Mag. B 65 (1992) 1.   
[45] M. Yoshida, A. Onodera, M. Ueno, K. Takemura, O. Shimomura, Phys. Rev. B 48 

(1993) 10587.  
[46] G. C. Serghiou, R. R. Winters, W. S. Hammack, Phys. Rev. Lett. 68 (1992) 331. 
[47] R. G. Greene, H. Luo, A. L. Ruoff, Phys. Rev. Lett. 73 (1994) 2476.   
[48] M. Hemmati, A. Chizmeshya, G. H. Wolf, P. H. Poole, J. Shao, C. A. Angell, Phys. 

Rev. B 51 (1995), 14841.   



[49] J. S. Tse and D. D. Klug, Phys. Rev. Lett. 67 (1991) 3559.   
[50] N. Binggeli, N. R. Keskar, J. R. Chelikowsky, Phys. Rev. B 49 (1994) 3075.   
[51] G. W. Watson and S. C. Parker, Phys. Rev. B 52 (1995), 13306. 
[52] Hirth and Lothe 
[53] Bulatov and Kubin 
[54] J. P. Chang, HK Symp 
[55]  M. S. Duesbery and G. Y. Richardson, Crit. Rev. Solid State 17, 1 (1991). 
[56] W. Cai, V. V. Bulatov, J. F. Justo, A. S. Argon, S. Yip, Phys. Rev. Lett. 84, 3346 

(2000) 
[57] V. V. Bulatov, S. Yip, A. S. Argon, Philos. Mag. A 72, 453 (1995). 
[58] V. Celli, M. Kabler, T. Ninomiya, R. Thomson, Phys. Rev. 131, 58 (1963). 
[59] H. J. Möller, Acta Metall. 26, 963 (1978)). 
[60] H. Alexander, in Dislocations in Solids, F. R. N. Nabarro ed. (North Holland, 

Amsterdam, 1986), vol. 7, p. 113. 
[61] A. George, J. Phys. (Paris) 40, 133 (1979). 
[62] M. Imai and K. Sumino, Philos. Mag A 47, 599 (1983). 
[63] B. deCelis, A. S. Argon, S. Yip, J. Appl. Phys. 54, 4864 (1983) 
[64] G. C. Sih, G. C. and H. Liebowitz, in Fracture:  An Advanced Treatise, H. 

Liebowitz, ed. (Academic, New York, 1968), vol. 2, p. 67. 
[65] A. A. Griffith, Philos. Trans. Roy. Soc. A 221, 163 (1920). 
[66] K. S. Cheung, S.Yip, Phys. Rev. Lett. 65, 2804 (1990). 
[67] K. S. Cheung and S. Yip, Modell. Simul. Mater. Sci. Eng. 2, 865 (1994). 
[68] E. Kaxiras and S. Yip, Current Opinion in Solid State & Mater. Sci. 3, 523 (1998). 
[69] F. E. Abraham, J. Q. Broughton, N. Bernstein, E. Kaxiras, Computers In Phys. 12, 

538 (1998). 
[70] A. S. Argon, Acta metall. 35, 185 (1987). 
[71] J. R. Rice, J. Mech. Phys. Solids 40, 239 (1992). 
[72]  J. R. Rice and R. Thomson, Phil. Mag. 29, 73 (1974). 
[73]  A. S. Argon, G. Xu, M. Ortiz,  Mat. Res. Soc. Symp. Proc. 409, 29 (1996). 
[74]  G. Xu, A. S. Argon, M. Ortiz, Phil. Mag. A 75, 341 (1997). 
[75]  F. Cleri, S. Yip, D. Wolf, S. R. Phillpot,  Phys. Rev. Lett. 79, 1309 (1997). 
[76]  K. S. Cheung, and S. Yip, J. Appl. Phys. 70, 5688 (1991).   
 


