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Elastic criterion for dislocation nucleation
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Abstract

The notion of theoretical strength, the critical stress at which a perfect crystal under uniform loading becomes structurally unstable, is
extended to non-uniform loading. A position-dependent defect nucleation criterion has been derived and applied in molecular dynamics (MD)
and finite-element simulations of dislocation emission in single-crystal nanoindentation. The resulting measure has the physical meaning of
a local stiffness; it provides a rigorous basis for modeling the incipient plasticity in a thin-film material. Furthermore, a close connection has
been shown to exist between the initial unstable elastic wave and the final atomistic defect.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In computational materials research multiscale modeling
has come to symbolize the linking of simulation mod-
els describing phenomena on length and time scales from
microscopic to macroscopic. In this paradigm electronic
structure would be treated by quantum-mechanical calcu-
lations, atomistic processes by molecular dynamics (MD)
or Monte Carlo simulations, microstructure evolution by
methods such as dislocation dynamics or kinetic Monte
Carlo, and continuum behavior by field equations well
known in fluid and solid mechanics. The appeal of such
an approach stems from the belief that by combining the
different methods, one can attack problems of longstanding
interest in a much more comprehensive manner than where
the methods are used individually. Multiscale modeling is
most useful when it allows us to gain physical insights not
accessible by experiment or theory-on-paper. The fact that
in a simulation one has direct control over the initial and
boundary conditions and access to complete information
on the electronic and molecular levels makes it possible to
unravel the microscopic mechanisms underlying a partic-
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ular phenomenon. A coherent combination of experiments
with modeling is also the most promising way to achieve
systematic structure–property correlations.

Nanoscale indentation experiments are currently used to
probe the mechanical response of crystals subjected to large
local contact forces. Such contacts can induce elastic insta-
bilities at weak spotsinside the sample leading to the homo-
geneous nucleation of one or more dislocations. The major
obstacle to a quantitative interpretation of these experiments
is the lack of a theoretical description relating elastic in-
stability to dislocation nucleation. During the past year we
have derived a defect nucleation criterion and demonstrated
its validity through molecular dynamics and finite-element
simulations. As a result, a self-consistent explanation of the
discontinuous elastic–plastic response observed in nanoin-
dentation measurements is now available, as well as a guide
to mechanical behavior studies seeking to quantify and pre-
dict the strength of materials at small length-scales.

2. Theoretical strength: the elastic limit

The theoretical basis for describing the strength of a crys-
tal lattice lies in the formulation of stability conditions which
specify the critical level of external stress that the system
can withstand. Born has shown that by expanding the inter-
nal energy of a crystal in a power series in the strain and
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requiring positivity of the energy, one obtains a set of con-
ditions on the elastic constants of the crystal that must be
satisfied if the lattice is to maintain structural stability[1,2].
This then leads to a determination of ideal strength of per-
fect crystals as an instability phenomenon, a concept later
examined by Hill[3] and Hill and Milstein[4], as well as
used in various applications[5]. We have shown that Born’s
results are valid only when the solid is under no load, by
invoking the formulation of a Gibbs integral[6]. Further dis-
cussions were given by Zhou and Joos[7] and by Morris
and Krenn[8], the latter emphasizing the thermodynamic
basis of the concept of theoretical strength by showing the
generalized stability criteria[6] are consistent with the in-
ternal conditions for elastic stability formulated by Gibbs
in 1876. A consequence of these investigations is that theo-
retical strength should be considered a property which can
be affected by the symmetry and magnitude of the applied
load, rather than an intrinsic property of the material. In this
respect the study of theoretical limits to material strength us-
ing atomistic models, including first-principles calculations
[9], has the potential to yield new insights into mechanisms
of structural instability.

Under a finite, constant, external stress in the applied
force-per-area sense the elastic stability criterion takes on
the form det[B + BT] > 0, whereB is the elastic stiffness
tensor:

Bijkl = Cijkl + 1
2(δikσjl + δjkσil + δilσjk + δjlσik − 2δklσij)

(1)

with Cijkl being the isothermal elastic constant to be eval-
uated in the current state, andσij being the external stress.
In the case of cubic crystals under a hydrostatic stress, the
criteria are particularly simple:

C11 + 2C12 + P > 0, C11 − C12 − 2P > 0,

C44 − P > 0 (2)

with the elastic constants now expressed in Voigt nota-
tion, andP > 0(< 0) denotes compression (tension). We
have found these criteria to be useful in molecular dynam-
ics studies of stress-induced polymorphic transition in Si
[10], cleavage fracture in SiC[11], and pressure-induced
amorphization in SiC[12] and SiO2 [13].

Eq. (1) is the Jacobian matrix of the Gibbs free energy
(or path-integral) with respect to further deformation, and is
only applicable when the entire coarsely homogenous block
of material is in direct contact with externally applied forc-
ing, such as when the block is deep in ocean so the applied
pressure on the surface can be taken to be a literal constant
in the force-per-area sense. This way, if the block undergoes
a virtual deformation, it would be able to elicit work from
the external environment, and the Gibbs free energy will be
the governing thermodynamic potential. However, we must
caution that this setup is rather singular and can be regarded
as a degenerate case of the more general non-uniform load-
ing condition, and therefore deserves special care. There are

subtleties such as: (a) one would arrive at a different cri-
terion fromEq. (1) if the external forcing is dead load in-
stead of constant stress in the force-per-area sense; and (b)
B is asymmetric with respect toij ↔ kl exchange under
non-hydrostatic loading, reflecting the path-dependence of
the Gibbs integral, which all stems from the above degener-
acy.

The foregoing elastic stability criterion applies to a perfect
crystal block under homogeneous deformation. For a perfect
crystal underinhomogeneous deformation, one can expect
one or more defects to be nucleated at internal sites—defined
to be the weak spots—when the loading reaches a criti-
cal level. This problem was first discussed by Hill[14] in
a study of “acceleration waves”, a dynamical, continuum
analysis where the acceleration across a surface becomes
discontinuous. Rice treated essentially the same instability
phenomenon[15] in the context of shear localization, arriv-
ing at a formal criterion with a tensorL playing a similar
role as the stiffness tensorB in Eq. (2).

We have derived a defect nucleation criterion which is in
effect both an extension and a practical implementation of
the formal results of Hill and Rice. We consider a repre-
sentative volume element (RVE) subjected to homogeneous
deformation at finite strain to a current configurationx. Ex-
panding the free energyF to second-order in incremental
displacementu(x), we obtain

�F = 1

2

∫
V(x)

Dijklui,j(x)uk,l(x) dV (3)

whereDijkl = Cijkl + τjlδik, τjl being the internal (Cauchy)
stress, andui,j≡∂ui(x)/∂xj. Representing the displacement
by a plane wave perturbation,ui(x) = wieik·x, leads to the
stability condition for the RVE:

Λ(w, k) ≡ (Cijklwiwk + τjl)kjkl > 0 (4)

The sign ofΛ reflects the concavity ofF. If there ex-
ists a pair ofw, k such thatΛ is negative, then homogene-
ity of this RVE cannot be maintained and defect singulari-
ties will form internally. In other words, the elastic stability
of the RVE can be determined by minimizingΛ with re-
spect to the polarization vectorw and the wave vectork;
the minimum value ofΛ, Λmin, therefore provides a mea-
sure of themicro-stiffness locally, with instability predicted
at the position whereΛmin vanishes. Notice thatEq. (4)
is an energy-based criterion; its minimization at a material
point is dependent on the local stress environment. Also,
the Helmholtz instead of the Gibbs free energy is expanded
because we assume either (a) the plane wave perturbations
reside in a periodic boundary condition box (the Born–von
Karman condition) so external work cancels out; or (b) the
long elastic waves constitute a wave packet that is local-
ized inside the weak spot which is not in contact with the
external forcing, so the perturbation would not elicit exter-
nal work. Actual nanoindentation experiments using smooth
spherical indenters correspond to the second scenario, be-
cause we know from Hertzian analysis that the maximum
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shear stress does not occur at the contact surface but is at a
finite depth beneath the indenter (similar to a lens’ optical
focus), so the weak spot develops within the material that is
not in contact with the indenter, so naturally the instability
mode would localize inside the weak spot, and not venture
outside to domains with positive micro-stiffnessΛmin, be-
cause it does not pay free-energy-wise anyway. With vanish-
ing displacement field everywhere outside, the mode would
not elicit work from contact forces, and therefore when an-
alyzing the free energy balance, we need not take external
work into account.

One may regard the elastic stability criterion (Eq. (4))
as the condition for vibrational stability of a perfect crys-
tal lattice in the long wavelength limit. The vanishing of
Λmin then corresponds to the phenomenon of soft phonon
modes in lattice dynamics. Indeed one finds under suffi-
cient deformation such soft modes do occur in a homoge-
neously strained lattice.Fig. 1 depicts the correspondence
between the softening of phonon frequencies in fcc Al and
the stress-strain response of the single-crystal system at low

Fig. 1. Phonon dispersion curves and stress-strain response of a single-crystal fcc Al under hydrostatic tension. Undeformed results (upper panels) and
results in the vicinity of critical strain (lower panels), both denoted by the circle on the stress-strain curve. Experimentally measured phonon dispersion
data by neutron scattering are shown as triangles.

temperature, both simulated using the Ercolessi–Adams po-
tential [26] and undergoing hydrostatic strain until beyond
the limit of ideal strength. Dispersion curves, obtained by
diagonalizing the dynamical matrices ink-space, are shown
along with a stress-strain response determined by molecu-
lar dynamics simulation using a supercell containing 4000
atoms atT = 10 K under PBC, corresponding to the first
scenario mentioned in the last paragraph. Results for the un-
deformed lattice are given in the upper panels, along with
experimentally measured phonon dispersion data obtained
by neutron scattering[27]. In the lower panels the system is
at the state of critical strain as indicated on the stress-strain
curve. It can be seen from in the lower left panel that
certain phonon modes near theΓ -point have just become
unstable.

The soft phonon analysis, when all modes including the
zone-boundary modes are considered[28], guarantees the
structural stability of a perfect crystal asT → 0 because the
phonons constitute a complete basis for all atomic motion
in the system. But at finite temperature we no longer have
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the above exact criterion, because energies of the modes
are no longer decoupled, in which case the quasi-harmonic
approximation is a useful but no longer exact tool. On the
other hand, althoughEq. (4)is but a special case of the full
soft phonon analysis atT = 0, it remains a rigorous criterion
at finite temperature because of its thermoelastic origin. We
believe thatEq. (4) covers most of the instabilities driven
by affine strain in monatomic crystals, whereas full phonon
analysis is usually necessary for more complicated crystals
such as�-SiC [28].

3. Application of Λ-criterion to nanoindentation

The implementation of the defect nucleation criterion is
nontrivial. There are conceptual and computational issues to
be resolved in demonstrating the practical utility of our for-
mulation. The conceptual challenge is the lack of accurate
constitutive models to estimateτjl andCijkl at strains great
enough to trigger local structural instability. (How best to
represent the strain energy in the six-dimensional space of
general strain using ab initio calculations? By brute force,
it would require∼106 spline data to be evaluated even with
merely 10 mesh points in one dimension.) The computa-
tional challenges also include how to calculateΛmin reli-
ably. While minimization in the four-dimensional space of
k andw, with each being a unit vector, is not an especially
difficult task, doing it at every material point in the system
requires an exceptionally reliable and efficient algorithm.
For example, our determination ofΛmin in the molecular
dynamics simulation of nanoindentation involves the calcu-
lation of this quantity for each atom at every timestep, with

Fig. 2. Molecular dynamics results for the load-displacement curve (displacement controlled) in nanoindentation on bubble raft showing characteristic
load drops when a dislocation is nucleated[16], and variation ofΛmin with indenter depth.

the simulation consisting of up to 2 million atoms and runs
as long as 105 steps.

In applying the criterion to nanoindentation of thin films,
our intention is to probe the elastic limit and incipient
plasticity at critical loading[16,17]. Two modes of imple-
mentation are developed, one is direct molecular dynamics
simulation and the other involves a new method which incor-
porates interatomic potential calculations in a finite-element
framework. In the latter the problem of obtaining a suitable
constitutive model is solved by invoking the Cauchy–Born
condition [18,19] which then allows atomistic simulations
on-the-fly to return the local stress and elastic constants
[20,21] for a given nodal strain. Further details are given
below. For pair and embedded-atom type interatomic po-
tentials, the partitioning of lattice sums into contributions
from individual atoms is straightforward, whereas for more
complicated potential forms special arrangements will be
needed to preserve symmetry and sum-rule requirements
[22]. The partitioning is justified as long as the atom in
question is a few lattice spacing away from any topological
defects, even if the atom is situated in a field of large affine
strain.

To overcome the computational challenge we note that
Λ(k, w) is a bi-quadratic function ink andw, and can be
alternately written as

Λ(w, k) = (Cijklkjkl)wiwk + τjlkjkl (5)

where the order ofk, w summation is exchanged from
Eq. (4). If we assumew were a constant inEq. (4) and
minimize with respect tok only, then solving the simple
quadratic minimization involves diagonalizing the 3× 3
symmetric matrix [A]jl≡Cijklwiwk + τjl and choosing the
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Fig. 3. Indentation of Bragg–Nye soap bubble raft causing the nucleation (position denoted by∗) of an edge dislocation dipole which dissociates in the
manner indicated by the arrows[17]. Nucleation occurs at a distancez0 which scales at 0.78 of the indenter radius.

softest eigenvector to bek. Alternately, assumingk to be
a constant inEq. (5) we can minimize with respect tow,
and the solution is again straightforward, diagonalizing
[B]ik≡Cijklkjkl and choosing the softest eigenvector to bew.
Based on these observations an iterative algorithm to min-
imize Λ(w, k) consists of repeating the sequence—choose
arbitrary w, minimize Eq. (4) for a fixed w to obtain an
initial k, then minimizeEq. (5) keepingk fixed to obtain
a new vectorw—until convergence. Since only diagonal-
izations of 3× 3 matrices are involved, the algorithm can
be made quite efficient by using the analytical solution of a
cubic algebraic equation[23].

Fig. 2 shows the load-displacement curve of a displace-
ment-controlled nanoindentation of a two-dimensional sys-
tem in the form of Bragg–Nye bubble rafts[16,17]. The
MD results, obtained by molecular dynamics simulation us-
ing an appropriate inter-bubble potential, show a series of
load drops, each signifying the nucleation of a dislocation.
An event of this kind is seen inFig. 3 which is an actual
image from a bubble-raft experiment[17], where a disloca-
tion dipole is nucleated subsurface at a depth predicted by
continuum (Hertzian) contact mechanics to scale with the
radius of the indenter. Also shown inFig. 2 are the results
for Λmin, evaluated for the bubble-raft simulation system in
the manner described above. One sees a close correspon-
dence between the sequence of load drops observed in the
MD simulation and the sequence of vanishing ofΛmin over
a range of indenter displacements. Moreover, we find that
the w and k vectors which minimizeΛ(w, k) agree well
with the slip direction and slip plane normal, respectively,
observed in the MD simulation. We regard this agreement
between direct simulation and nucleation-criterion analysis
to be a quantitative validation of our formulation and imple-
mentation. Before leavingFig. 2 one should also note that
as the indentation loading approaches the first load drop,

the system response is purely elastic, and the corresponding
values ofΛmin monotonically decreases toward zero, thus
confirming the meaning of local micro-stiffness that we have
ascribed toΛmin.

Because the instabilities predicted by theΛ-criterion are
elastic in nature, and since all atomic-level information is
incorporated throughCijkl and τjl, our defect nucleation
criterion also can be implemented in the framework of
finite-element method. Specifically, we have applied the
code ABAQUS in the finite-strain mode with a constitu-
tive relation provided by making use of the Cauchy–Born
rule [18,19]. In this description each material point (node)
is represented locally by an infinite lattice subjected to a
homogeneous deformation, prescribed by the current state
of the finite-element calculation. The nodal stress is then

Fig. 4. Comparison of load-displacement responses in two-dimensional
nanoindentation simulated by MD and by IPFEM using the same inter-
atomic potential as the MD[16].
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calculated from the deformed lattice using an appropri-
ate interatomic potential function. This procedure can be
applied at every node in the finite-element model, in the
same way that the defect nucleation criterion is evaluated
at every atom in the system in the molecular dynamics im-
plementation. A direct test of this scheme, which we have
called IPFEM, against pure MD simulation in the case of
two-dimensional nanoindentation, is shown inFig. 4.

4. Discussion

We developed theB-criterion for constant stress loading
under uniformly distributed strain, and there are other cri-
teria for dead load conditions, etc. which are all based on
taking the second-order derivatives of the Gibbs free en-
ergy. On the other hand, theΛ-criterion is based on taking
the second-order derivatives of the Helmholtz free energy,
which can be applied to cases of non-uniform loading in
which a weak spot develops inside the material that is not
in direct contact with the external forces and so we do not
need to consider external work contribution. Depending on
which description is really applicable, we arrive at two dif-
ferent criteria for elastic instabilities. This loading condition
dependence differs from a well-known property of the frac-
ture instability criterion in terms of the fracture toughness,
where it has been shown that whether the external loading
condition is constant force or displacement does not matter.
The reason for this discrepancy is that elastic instabilities
are second-order instabilities, where the perturbed variable
is the affine strain and the energy of concern scales as strain
squared, so we need to do variational calculus accurate to the
second-order, whereas in the formulation of the fracture cri-
terion, the variable is crack extension, and the energy of con-
cern (surface energy minus strain energy release rate) scales
linearly. As a general observation, all first-order instabili-
ties are insensitive to the exact specification of the loading
condition, but second-order instabilities may be sensitive.

The soft phonon modes we discussed have eigenvectors
which allow one to determine the character of the elastic
instability. This analysis extends naturally to translational
symmetry-broken systems where the wavevectork is no
longer a good label of all the normal modes in the dynami-
cal system; this has been formulated in terms of real-space
Green’s function and applied to analyze the onset of frac-
ture in a strained lattice[24,25]. In this respect, it would be
interesting to generalize theΛ-criterion to the problem of
crack-tip extension.

We are continuing to seek a more fundamental under-
standing of how a strained lattice, initially homogeneous, is
driven to nucleate a defect. An interesting question is: what
is the process by which a smooth wave in the continuum
metamorphoses into an atomistic defect which is a singular-
ity if seen at the continuum level? We believe the process
is characterized as a sequence of four stages. (1) An unsta-
ble elastic wave grows exponentially with time as indicated

by Λmin < 0, without changing its shape. (2) As the wave
amplitude increases to a significant level, growth becomes
nonlinear and the wave profile steepens progressively. (3)
Steepening becomes singular on the continuum level and the
wave front is resolvable only on the atomic scale. (4) Atom-
istically sharp wave front is stabilized as it is trapped in a
local minimum in a low-dimensional atomic energy land-
scape such as theγ-surface. There are also intriguing cor-
relations between the affine strain and the highly localized
strain energy landscapes[29].
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