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Core energy and Peierls stress of a screw dislocation in bcc molybdenum:
A periodic-cell tight-binding study
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Using a formulation based on anisotropic elasticity we determine the core energy and Peierls stress of the
ap/2[111] screw dislocation in bcc molybdenum Bt0. We show that a proper definition of the core energy
necessarily involves choosing a reference direci@md a reference radiug in order to describe dislocation
dipole rotation and dilatation respectively in the asymptotic expansion of the total energy. The core energy is
extracted from atomistic calculations for supercells containing a single dislocation dipole with periodic bound-
ary conditions in a manner that treats fully consistently the effects of image interactions, such that the core
energy extracted is invariant with respect to the supercell size and shape, image-sum aspect ratio, and dislo-
cation dipole distance and orientation. Using an environment-dependent tight-binding model we obtain
0.371 eV/A ata=(112) andr,=b and 3.8 GPa for the energy of a core with zero polarity and Peierls stress for
simple shear in(110)(111), respectively, to be compared to 0.300 eV/A and 2.4 GPa obtained using an
empirical many-body potential for a polarized core. Our results suggest that the large Peierls stress of screw
dislocation in Mo is due to the transition from nonplanar to planar core, rather than a direct effect of the
equilibrium core polarity.
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I. INTRODUCTION Two major sources of errors could arise in a quantitative

The unusual behavior of screw dislocations in bec metal€tomistic study of dislocation core structure and energetics,
has long been attributed to its nonplanar core strudtre, the accuracy of the interatomic interaction model and the
with further complications from the possibility of spontane- €ffécts of boundary conditions imposed to carry out the cal-
ous polarity} where atomic rows closest to the core centerculation. Empirical interatomic potentials, often fitted to
shift in either (111) or <T1> to break the(TlO) diag  €quilibrium propertieg? allow large enough system sizes to

symmetry®” Whether the finite polarity of the equilibrium be treated; however, there is no assurance they will give

core has anything to do with the high Peierls stress, in addir-eal'StIC results at large strairisee Fig. ]. Density func-

tion to the nonplanarity, is currently a topic of reseafch. gzg‘;ﬂ ettf:ssor}k;lg?g ?mﬁg dtthoes(rjr;{gﬁrsSagr?;’elrl)sr?/\\//;]deerz 25;”;?};-
Experimentally measured yield stress of single crystal Mo 9 ’ P

shows strong temperature dependence from 6400 K16 l4c
suggesting a significant lattice friction effect. It is commonly

believed that in th¢110(111) slip system of Mo, nonscrew 12
dislocations have a much higher mobility than the screw dis-

locations, which move by the double-kink mechanignt 1
and whose kinetics is controlled by kink nucleation rather
than migration, as the kinks have nonscrew character. Recent
calculations have shown that heterogeneous nucleation of
kinks from dislocation triple junctio8 may greatly reduce

the kink nucleation stress from that of “homogeneous nucle- ©
ation” (spontaneous nucleation of double kinks on an infi-
nitely long, straight screw dislocation without the aid of
other defects This may help explain why the Peierls stress
calculated for perfect screw dislocation {110 plane is § ; : ; : ; ;
0.015 to 0.026 (G is the resolved shear modujusr 005 01 015 02 025 03 035

2.1-3.4 GP& whereas the experimentally measured criti- Yatoxa1y

cal resolved shear stress is only750 MPa asT —0 K.16

Nonetheless, the proper atomistic determination of the core FIG. 1. Relaxed110)(111) shear affine stress-strain response in
structure, core energy and Peierls stress of an infinitely longio calculated using the Finnis-Sinclair potenti@ef. 22. The
straight screw dislocation in Mo is still an important problem cusp in the response is due to the finite potential cutoff between the
at the conceptual and technical levélg! second- and third-nearest neighbors.

]
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lapping and image stress effects can be significant; furthellution is self-equilibrating(stress equilibrium is satisfi¢dn
more, in bcc Mo,k-point sampling and energy cutoff con- the far field, the above thought experiment is well-posed and
vergence needs to be monitored carefully. Added to theskE(d) is the final increase in the atomistic total energy. At
concerns are difficulties in extracting the dislocation corelarge |d|, the leadingd-dependent term irE(d) must be
energy and Peierls stress from atomistic calculations using|b|?(log|d|)/2, with K¢ proven invariant with respect to
the periodic boundary conditia®BC), the problem of “con- ¢ gisplacement cut directiah=d/|d|2° Let us defined to

ditional convergence” in the image dislocation dipole sum-b h e b ot and bitrarily ch f
mation. One approach circumventing the latter is to use inP® the angie between and an arbitrarily chosen reference

stead the so-called first-principles Greens function boundarglirectiona, withd L £ anda L £, [d|=|&/=1, and{ is the line
condition(FP-GFBQ to study a single dislocatiol:23Alter-  direction of the straight dislocation. An asymptotic expan-
natively, we have developed a formalism for PBC calcula-Sion of E(d) at large [d] would yield O(log|d|), O(1),
tions of the core enerdy?! and the Peierls stre¥124  O(|d[™),... terms. TheO(1) term may generally contain a
whose results are manifestly invariant with respect to thef-dependent componeni®d), and ad-independent compo-
image-sum aspect ratio, supercell geometry, and position antent. For the sake of definiteness, we reqgifé=0)=0, and
direction of the dislocation dipole. This is the approacha will be called the zero-angle reference ax$6) is entirely

adopted for the present work. given by anisotropic elasticity,
In Sec. Il, we propose a rigorous definition of the dislo-
cation core energy based on a thought experiment of creating 3 bTK b (a + pra )2+ (pi g )2
an isolated dislocation dipole in an infinite atomistic crystal. 2A(0) = >, “log 2 s (2
The physical significance and mathematical utility of the ozt AT (& * Pady)” + (P,8y)

core energy are discussed. It is shown that in an anisotropic P )
elastic crystal, a reference directiéris needed for the core  Wherep,=p,+ip,, =1,...,3, are the three Stroh eigenval-
energy to have a properly defined value, in addition to &€S  With nonn$gat|ve imaginary parts, anK,
reference radius,. In Sec. lll, we review the procedure that E—Z[Re(La)Im(La% +Im(L)ReL )] is the mode-specific
enables one to extract the core energy from PBC supercelfodulus®® with =7_; b'K ,b=K{b[?. Physically, 2(¢) is
calculations, and use the empirical, many-body Finnisthe rotational energy landscape of a dislocation dipole with
Sinclair potenti&? as a test case to verify the invariance of fixed [d| in an infinite anisotropic crysté when|d| is as-
the results. In Sec. IV, we use an environment-dependentmptotically large. It is seen from Eq2) that A(6)=A(6
tight-binding potential for MqRefs. 25-28to determine the  + 7). To illustrate,A(6)'s for Si ay/2[110] shuffle-set screw
core energy and Peierls stress of screw dislocation, and corand Mo a,/2[111] screw dislocations are evaluated and
pare results with the Finnis-Sinclair potential. The relation-shown in Fig. 2.
ship between the equilibrium core polarity and the Peierls jith the O(log|d|) and 6-dependentO(1) parts known,
stress is also discussed. Finally, a summary is given in Seghe|d|- and ¢g-independent(1) part of E(d) can be used to
V. select the mathematical carg E;,. pair. Imagine for a fixed
6, we plot E(d) data with|d| on a chart(d can only take
discrete lattice spacingand we would like to fit the data to

a smooth functionE(d). We need to shift the function
Kdb|?(log|d|)/27 up or down to get a good fit at largd)|.
There are two definitions of the dislocation core: a physi-That shift operation is well defined asymptotically and is
cal core and a mathematicadlasticity) core. The physical unique. If we ignored|™ etc. terms in the fitting template
core is defined by atoms whose local atomic order like th%(d)E2Ecore+2A(0)+(Ks|b|2/27-r)log(|d|/ro), 2E oret 2A(6)

coordination number or inversion symmetry is drastically . ~ _
different from that of the crystalline bulk, from which we would be the abscissa @(d) at [d|=rq. It doesnot mean,

may define a core sizel™> Obviously, rf™ is significant however, thatE(rg) =2+ 2A(6), as E(d) only fits E(d)
and useful, but needs not be a precise real number due well at large|d| (satisfying at leastd|>2r5™9. It is thus
lattice discreteness. In contrast, the mathematical core radiwear thatro, Eyoe (anda) are mathematical instruments to fit
ro and core energ¥... can be defined as precise real num-E(d) to an asymptotic form and do not carry physical mean-
bers from an asymptotic expansion of the total energy of ang in either quantity alone. If one likes, one may choose

dislocation dipole in an infinite, and otherwise perfect,r =1000b| and selecE,, accordingly ScE(d) remains the

II. MATHEMATICAL DEFINITION AND PHYSICAL
MEANING OF DISLOCATION CORE ENERGY

atomic lattice, same function and nothing is changed. There are several
Kb |d| popular choices, however, such@staker,=|b|, (b) choose
E(d) = 2Egpret 2A(0) + ———log— + O(d|™), (1) 1o SO Ecore=0, (€) ro=rf™® to minimize confusion,(d) rq
fo =1 A to simplify numerical calculation, etc. It is seen that

at large|d|. Here, E(d) is defined to be the total energy €xcept for(c), none of thery’s has anything to do with a
increase in a thought experiment of an infinite discrete latticgohysical core size. It is also clear that althougfld) by defi-
whose atoms displace according to the leading-order Strohition must fitE(d) well at large|d|, there should be a big
solutior?® ug(x) at[x+d/2|>r5™s but which are allowed to error as|d|— 2r§"*and the physical cores begin to overlap.
relax atomistically near the physical cores. As the Stroh soFinally, &, r, and Eg,,e combined do carry physical
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005 ; ' ' ' ' ' ; : ro) can be used to determine which core configuration is the
: 5 : : 5 ground state when multiple metastable core configurations
are found in an atomistic calculatioft, although in practice
this is often unnecessary, because the differende jn val-
ues is trivially related to the total energy difference between
calculations with identical supercells. Thus, the main utility
of Egqeis for calibration and information exchange, and to
feed coarse-grained models, rather than for analyzing an ato-
mistic calculation itself.

From the above, it is apparent that the choice of the zero-
angle reference axié influences the numerical value of
E.ore in addition to the choice of the reference radigsThis
point is not widely appreciated. Indeed, even the existence of
the dipole rotational energy landscap&(®2) has usually
been ignored in the analyses of atomistic modeling results in
0 40 e s 10 120 140 10 10 the literature. Note from Eq2) that A(6) originates entirely

A(©) [eV/A]

e[d?gi;ee] from elasticity. A(6+ nm) is generally nonzero for disloca-
tion dipole except screw dislocation dipole in isotropic me-
352107 ; . . . . , dium. For example, even edge dislocation dipole in isotropic
: | ’ : medium has nonzer&(6). E,. completely characterizes the
b NN net energy consequence of core atomic relaxations, but one

must report what elasticity parametegsanda are chosen as
the elasticity matching partners. For instance, it was reported

. . , , ; ; previously© that E,,, of a,/2[110] shuffle-set screw dislo-
5 sl Yi oo e s ook ssossabhssrmrsfdbse e Sormso cation in diamond cubic Si was 0.502 eV/A, witg=|b| and
' : using the Stillinger-Weber potential. Later, a separate, inde-
SREUR I WU SO (N SRR WUSUION NSRS SO pendent calculation giveE.,.=0.526 eV/A for the same
P e P setup. It is then traced back and determined that while the
1k 2 5 ,7' \ ! \ | latter calculation usea={112), the former calculation in ef-
e N | g : . X fect useda=(111). The offset is exactly given byA(#
oabf ST VORI 700 SO WSSO0 SO SO O =/2)=0.024 eV/A as shown in Fig.(8). So both calcula-
B A% ¥ T tions are completely correct, with the only difference in the
ol i . W i AN, i choice of the zero-angle reference agisnd a trivial con-
0N Y M 1010 version ofEgyes between them.
(ii) To summarize, the numerical value &f,. carries no
physical meaning unlessandr are specified. The conver-
FIG. 2. (Color online (a) The angular functionA(d) of  sion of Ey. to other(a,ry) “elasticity references” can be
ay/2[110] shuffle-set screw dislocation in Stillinger-Weber poten- performed easily with the understanding tEétl) of Eq. (1),
tial Si (Ref. 20, with (112 as the zero-angle reference agisThe  being a physical measurable in a well-posed thought experi-
corresponding core energy is computed to be 0.502 eV/Arfor ment, is invariant, whil&, ro, Esoe are merely parameters in
=|b]. In a separate calculatiGAwith (111) as the zero-angle refer- a mathematical partition of its asymptotic behavior. All our
ence axis, the core energy was computed to be 0.526 eV/A. ThE., values below for Mo screw dislocations are based on
0.024 eV/A difference is verified to be exacth(6=/2), as  choosingr,=|b| anda=(112).
shown above in the circlgb) The angular functiomA(6) for Mo
ay/2[111] screw dislocation using the Finnis-Sinclair potential
(dashed lingand the tight-binding potentigsolid line), both witha
chosen to be(112. There is A(6)=A(6+x/3) due to crystal
symmetry. Even with the tight-binding potenti#&28and using state-
of-the-art supercomputers, to perform calculations with more
meaning—as much as any other defect formation energies-than 1000 Mo atoms to satisfactdkysampling convergence
for examp|e7 in eva|uating the absolute energy needed f@tl“ requires nontrivial Computational effort. Thus, we first
creating a large dislocation loop out of a perfect crystal. Thec@librate the error of small supercells using the Finnis-
atomistically evaluate&,.is essential for developing accu- Sinclair potentigl* before embarking on more expensive
rate potential energy landscapes for coarse-grained modeight-binding calculations. From these numerical experi-
like nodal dislocation dynamics. It is needed, for example, inments, we verify that the core energy of Mo screw disloca-
determining how much plastic work is converted into heat adion can be extracted to high accuracy with a 231-atom su-
versus defect creation for a given dislocation microstructurePercell dipole configuration using our new PBC image-sum
In theory, the numerical values &, (for the sameb, £ &,  formalism?°21 The setup is as follows. Defing=a,[112],

2.5

A(0) [eV/A]

IIl. EXTRACTING CORE ENERGY AND PEIERLS
STRESS FROM SUPERCELL CALCULATIONS
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FIG. 3. (Color onling Differential displace-
ment map of Mo screw dislocation using the
Finnis-Sinclair potential.(i) h;=7e;, h,=3.5¢;
+5.%2+0.563, h3=e3 cell. (||) h1=861, hzzl&z
+0.53, hy=g; cell.
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e,=a,[110], e;3=a,/2[111]. An orthogonal supercell &  occur, a finiter; or 7, would push the dislocation core
X 11e,X e, is almost square and contains 462 atoms, inAgainst the lattice parrler and distort its shape from equilib-
which we can put in 4 equally spaced screw dislocations tdium which would introduce error to the computed core en-
form a quadrupolé®!2 Because of symmetry redundancy, €9Y Ecore _ _ _

this quadrupole cell can be mapped to an entirely equivalent We can now briefly discuss the image sum procedure for
dipole cell half its sizgFig. 3i)], with three edge,=7e,, extracting thg core energy fr_om p_enodlc supercgll calcgla—
h,=3.5e,+5.5,+0.583, ha=e,. The 0.8 in h, is critical in  tONS. A deta|leq account is given in Ref. 21. An instructive
this mapping, in view of the fact thadoum= €qasict €plasio approach to t_hls problem is to thl_nk about how to explicitly
where € iS total strain corresponding to the tilt of the construct a displacement fieldx) in the supercell, thata)
supercell, e,.sic iS the plastic strain generated by the dis- Satisfies the displacement oiscontinuity in the displace-
placement cut in the dipole celh the quadrupole celk,s; ~ Ment field required by the dipole(b) is S%If-equmbratmg,

is zero as there are two opposing OutaNd e pasic is the  and(c) is compatible with the PBCQu(x+h;)=u(x) and all
volume-averaged elastic strain in the supercell, which relategrders of derivatives including the first, wifh} being the
directly to the volume-averaged Virial stresg;, according  supercell edges before the dipole cut. The following Green’s
to linear elasticity. So, by “preemptively” making,,  function sum:

= €yjasiic W make sure that the,5i=0 andr, =0. It can ~

be shown thata) 7z =0 minimizes the su\ggcell total en- U (x) = Mug(9) + 2 ug(x = R)) 3
ergy Euomisic With respect to the supercell shape R70

(hy,hy,h3),2%2 and (b) at dipole separatiod=h,/2, the lo-  conceivably could lead ta(x), whereug(x) is the displace-
cal stresses at the first and second dislocations vanish simuhent field of an isolated dislocation dipole in an infinite
taneously:r;=7,=0. This stabilizes the two dislocations so medium (the same one used in the thought experiment of
they do not annihilate, which often happens in small superSec. l). The dislocation lines are all parallel t8), andR

cell calculations. Even if spontaneous annihilation does notn;h?+nh3, n;=-N, ... N, n,=—aN, ... ,aN. \ is from 0
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to 1 to label the magnitude of the cut displacement from 0 to An alternative to the above procedure is to start with the
b. Presence of thag(x) term inT, (x) will satisfy condition  isolated-dipole-in-infinite-medium thought experiment, and
(a). Condition(by) is trivially satisfied as all Green’s function add an additional displacement fieldx) = u,=1(x) —ug(x)
displacements are self-equilibrating away from the coresto a cut-out regionQ) spanned by(h%}. Becausew(x) is
Condition(c) is a bit more subtle. It can be mathematically singularity-free inQ) and self-equilibrating, we can effect

proved that, that change by dragging the boundary(»pf The energy in-
1 crease during this process is simply the boundary work done
Ty (x +h?) =Ty (x) :)\D(a)h?+O<N) (4) ondQ (the outside regiorf) needs to be relaxed also, by

letting go Q). Furthermore, addingv(x) in €} has such an
asN— o, whereD(«) is a 3% 3 affine transformation matrix effect that we now can “glue” the opposing sides aft
that depends solely on the image-sum aspect tatd(a) is ~ together to produce the self-equilibrating PBC configuration

the cause of the apparent conditional convergence. To get ri#at we seek. In topological terms, we cut a rectangle con-
of it, we write taining the dipole out of an infinite plane, roll it and stitch it

to form a toroidel surfacew(x) needs to be injected for the
Uy (x) =T, (x) = AD(a)X. (5) edges to match. In this procedure, we bypass integrating over
) o ] the singularities all together, and the literal implementation
Itis seen now thaitiy(x) satisfies(a), (b), (c) simultaneously, ot this process actually leads to a viable numerical scheme.
SO one can use,-1(x) to transform atoms in the PBC super- gyt, it has been verified, both analytically and numerically,
cell without creating gaps or stress imbalence. In practicethat the outcome of this procedure is exactly equal to the
D(«) is evaluated numerically by analyzing the behavior Ofimage dipole sum plu®(a) work derived nominally from
,(x) from image summations at a constanend progres-  Eq. (6).
sively largeN's. Equation(5) setup is easier to explain, but gives a large
Suppose we start out with a PBC super{:leﬁ’l} containing  supercell virial stress, as
a stress-free crystal. We adiabatically chahd®y effecting a
cut incrementd\b along the dipole cut in the cell. At each T 0T
instant, the displacement field in the cell ig(x), so the _ Dpiastic* Dplastic b(d xhy)

stress fieldo, (x) is available by plugging ifVu,(x). The Eplastic ™ 2 P TPlasticT Ty
incremental work is simply Colastic= ~ €plasic (9)
dw= d)\J b-,(x) -ndS, (6) since g4,=0. Therefore in practice we use
which is converted to potential energy. EquatiaBs, (5), _
and(6) combined give a total energy expression that consists Ux(X) =Uy\(X) + N(Dpjastic= D(@))x (10)
of:
. _ solution, with a new supercell;=hP+\Dpj,sid! that is in-
(1) Dipole self-energy in the form of Eq1); troduced at the beginning of this section. The total energy of
(2) Image dipole/displacement-cut, or dipole-dipole, cou-ihjs setup can be related to the previous one by accounting
pling energy; . _ for the additional boundary work, which leads to a very
(3) D(a) stress/displacement-cut coupling energy. simple resulg®2!

. o . To validate the above, we relax the Mo screw dislocation
Summation over individual Stroh modes in the manner ofgipole in four supercell geometries using the Finnis-Sinclair

Eq. (2) is required to account for the dipole-dipole interac- potential??
tion energyEgipole-dgipole 1€ €XPression

(i) hy=7e;, h,=3.5e;+5.5¢,+0.53, hy=¢; cell, contain-
ing 231 atoms;

(i) h,=8e;, h,=16e,+0.5e3, hy=e; cell, containing 768
atoms;
(iii) hy=16e;, h,=64e,+0.52;, hy=e; cell, containing
44 atoms;
(iv) hy=32¢;, h,=32e,+0.5e;, hy=e; cell, containing

1 6144 atoms.

AVvimage dipole™ EEdipole-dipole (8)

Kdb?  |R+d|IR-d|
Edipole-dipole: o0 Iog |R|2 (7)

is simply incorrect in anisotropic medium as it ignores the
2A(6) angle-coupling terms. Note also that one needs to havg1
an extra factor of 1/2,

The differential displacemeDD) maps?® of (i) and (ii)
for the R+ 0 dipole-dipole interaction energy, since one di- &€ Shown in Fig. 3, in which the spontaneous polafitie
pole “owns” only one-half of the interaction energy. In con- manifest, which is characterized by the breaking of(tti0)
trast, it “owns” 100% of its self-energy. All these follow diad symmetry operatiorfs’ If we use A as the length unit,
automatically from Eq(6). then we can write
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TABLE I. Mo screw dislocation core energy withy=|b| and
a=(112) using the Finnis-Sinclair potentigRef. 22.

Esupercell(ev) Eelastic(€V) Ecore(€V/A)
0} 6.0410 7.1361 0.2995
(i) 7.0069 8.0955 0.3006
(iii) 8.8935 9.9838 0.3003
(iv) 11.0432 12.1318 0.3007
- Kyb[? 0 iV
supercell™ elastic+2 Ecore_ 4 IOQ o |h3|, (11)

whereEgperceis the increase in the total energy of the PBC oo e e e e T
supercell compared to the perfect crysBls;iciS the result
of the elastic energy summation without thg E.. con-

stants, and also by choosigg(112 so the Z(6) term in
Eqg. (1) gives no contributionbut its equivalent effects are
present in the image dipole coupling energigs|b|?/ 4,
the single dislocation energy prefactor, is 0.499 eV/A for the o
Finnis-Sinclair potential. Numerical results fén—(iv) are ool e
shown in Table I, respectively. We see that by varying thec-o-c c-c-c.0.0-0-c-0- 0000
supercell size and shape, the elastic endigy.dominates ~ (©)
the total energy Iandscape. However, the differences between FIG. 4. (Color onling Differential displacement map of Mo
Esupercen@nd Egjasiic remain remarkably constant. If we take screw dislocation using the tight-bindi tenti s
~ g the tight-binding potenti@). r,= =0, (b)
ro=|b| and 8=(112), then E,=0.300+0.001 eV/A, a de- =1~ 3.8 GPa(c) transient configuration during the stress-driven
finitive result. Thus supercelli), which contains only 231 instability.
atoms, is capable of providing very accurate core energy.
true with our tight-binding potenti&—22 In the following
calculations we use X 1Xx28 k-sampling mesh and a
IV. TIGHT-BINDING MODEL RESULTS Gaussian smearing width of 0.1 eV. We carry out energy
minimization with two initial core structures: one freshly

25-28 used in our calculations has been shown to give thégenerated using Eq10) that has. no core polarity., and one
correct band structure, cohesive energy curves for bcc, Al?lr_eady ful!y relaxed by Fhe anls-SlncIalr potent!al that has
fce, hep, and simple cubic lattices, vacancy and interstitial inite polarity as ;hown in Fig. (®. .In bth cases, I rglaxes
formation energies, phonon dispersion curve including phoE0 the same _conﬂguratlon by the tight-binding po_tentlal, W't.h
non anomalies at H- and N-points, afiD0) surface recon- a zero-polarity core structure whose DD map is plotted in
struction. The equilibrium lattice constaat, elastic con- Fig. 4@.

. The core energy accounting is given in Table Ill. As the
stants, the110)(111) and(112)(111) resolved shear moduli iyt hinding potential has slightly different elastic constants

G, and screw dislocation energy coefﬂmmﬁo are givenin  from the Finnis-Sinclair potential, the analytic elastic energy
Tab!e I1, along with the experimental and Finnis-Sinclair po-g;m Eomsic i Slightly different from that of the Finnis-
tential results. _ o _ Sinclair potentialsee the first row of Table)l even though
Numerical experiments of Sec. Ill indicate that the tilted ie cel| geometries are identical. To minimize the error of
supercell(i) of 231 atoms would be a good setup for higher'k-sampling, the total energy incremeRt, perceis computed
level calculations if the physical core size is comparable tQyith reference to a zero-stress perfect crystahat7e,, h,
that of the Finnis-Sinclair potential, which turns out to be:3_5el+5_5ezl hs=e€5. From Eqjasic and EqpercerWe deduce
the core energ¥,..to be 0.371 eV/A, which is not very
TABLE Il. Comparison of equilibrium properties of bcc Mo different from the Finnis-Sinclair potential result of
using the Finnis-Sinclai(Ref. 22 and tight-binding(Ref. 25-28 0.300 eV/A.
potentials with experiment®Refs. 31 and 3R

The transferable tight-binding model for MoRefs.

TABLE IIl. Mo screw dislocation core energy withy=|b| and
aA) Ci1(GPa Ci(GPa CuyGPa G(GPA K{(GPa  a=(11) using the tight-binding potentidRefs. 2528

F-S 3.147 464.7 161.5 108.9 137.4 135.2
B 3141 475 145 99 1430 1378 Esupercell(ev) Eelastic(ev) ECOFE(EV/A)

Expt. 3.147 479 165 108 140.7 137.9 (i) 6.50704 7.26528 0.37065
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Besides the core energy, the formalism outlined in Sec. lllother factors in the model than whether the model gives a
also provides a full account of the stress distribution in thepolarized equilibrium core or not.
cell, local stress, 7, on either of the dislocations leadingto ~ On the other hand, all model calculations indicate that in
Peach-Koehler force, and cell-averaged virial stress. As  order for bce screw dislocation to move, it must transform its
a special case, we predict that supercgllleads tor;=7,  core structure from having a nonplanar Burgers vector den-
=7iia=0. These predictions have been verified explicitly.sity distributior?® to a planar distribution. During this pro-
Tvirial 1S €asy to check as it is directly calculable in mostcess, the polarity order parameter necessarily will change,
atomistic simulation codes. As for;, 7, we compare the but perhaps only as a slaved variable to the planarity order
predictions with numerical results from the so-called localparameter.
driving force approach? where one evaluates the difference
in total energiesAEg,erce between two relaxed configura-
tions of identical cell geometries but with one dislocation V. SUMMARY

displaced by one lattice spacing. Both comparisons agree e have formulated a calculation of the dislocation core

well numerically. . . _energyE.that is mathematically and physically consistent
Using cell(i) as a starting point, we may apply additional j, the framework of anisotropic elasticity. Since a dislocation
strain as, monopole cannot be created out of an infinite perfect crystal,

the core energy is defined through a well-posed thought ex-
h,=7e;, h,=3.5, +5.5,+(0.5+x)e;, hy=e;, (12)  periment of creating a dipole. As the total energy of this ideal
dipole contains asymptotic elastic-energy terms describing
dipole dilatation and rotation, an actual calculationEpf,

in the tight-binding calculations to study stress-driven insta . R - .
g g y naturally involves the specification of, and a. The issue

bility of the dislocation core. Equatio(il2) corresponds to A : . ;
. . — . here is similar to choosing a gauge in electrodynafiiaad
simple(unrelaxeg shear in thé110)(111) slip system of bcc  ooaging  solute activity reference states in  solution

Mo. As xis increased, we observe a gradual transition of th@hermodynamic@ To our knowledge, this is the first explicit
screw dislocation core from a threefold symmetric nonplanagecognition of the nominal angular-dependence in a quanti-
structure to one that is more and more localized between tWestive determination o, After all a dislocation, though
adjacent(110) planes. At a critical value ok.~0.24 [see  analogous to charge in electrodynamics, is not a scalar sin-
Fig. 4b)], we find the core structures can no longer be stagularity.

bilized and the two cores move toward one another and We have shown that withd, r, specified,Ee can be
eventually annihilate, accompanied by large energy drops. Ainambiguously extracted from PBC supercell calculations.
transient configuration is plotted in Fig(&d. One may alter- Using the Finnis-Sinclair potential, we find that a minimal
natively apply purgrelaxed shear. In the present setup, the supercell containing 231 atoms and a single dislocation di-

(110)(111) applied shear strain only generates a smallPole, properly set up, gives a core energy within 1% relative
(TlO)(llE} arasitic shear stress on the order oferror from the converged resuk,,, along witha andr,
0.8 GPa(0 SpGPa with the Finnis-Sinclair potentiaiwhich completely characterizes the net energy consequence of core

. ; A i atomic relaxations; this information is critical for developing
is too small to induce significant pressure-hardeningo  he total energy landscape of coarse-grained models such as

the two loading schemes should give very similar Peierl§, 441 dislocation dynamics.

stress results. Using th@10)(111) resolved shear modulus  Using an environment-dependent tight-binding model, we
of G=143 GPa, we estimate that the Peierls stregs studied the core structure af/2[111] screw dislocation in
~0.0265=3.8 GPa with our tight-binding potential. In com- bcc molybdenum. The core energy of Mo screw dislocation

parison, under the same supercell setup, Finnis-Sinclair pqs found to be 0.371 eV/A @=(112 andry=b, which can

tential givesr,~2.4 GPa. Using model generalized pseudo-,, .om A R :
. 35 i pared to 0.300 eV/A from the Finnis-Sinclair poten-
potential theoryMGPT),™ Xu and Moriarty computed;, to tial calculation. The equilibrium core structure is found to

ge ~3.'4 C|5Pa9 Insgeag;fGrgggg o_nhPBIC, Woodwartlj andﬁhave zero polarity. The Peierls stress is calculated to be
ao implemente ) with - planewave  ultrasofts g GPa, compared to 2.4 GPa for the Finnis-Sinclair poten-

seudopotential DFT and obtainety~2.1 GPa for Mo
gcrew dFi)sIocatioﬁ.l’% e tial, when simple shear is applied {@10)(111). Our results

Current results suggest that the equilibrium core pmaritysuggest _that the large Peierls stress of screw dlislocation in
has no apparent correlation with the high Peierls stress d?cC Mo is due to the nonplanar to planar transition of the
screw dislocation in bcc M& If we regard the Core rather than a direct effect of the equilibrium core polar-
Finnis-Sinclai?  ultrasoft pseudopotential DF¥23 1ty
MGPT235 and tight-binding modef§—?2as four independent
attempts at appro_ximatin_g the true Mo Born-Oppenheimer ACKNOWLEDGMENTS
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