
Time-dependent density functional theory with ultrasoft pseudopotentials:
Real-time electron propagation across a molecular junction

Xiaofeng Qian,1 Ju Li,2 Xi Lin,1 and Sidney Yip1,*
1Department of Nuclear Science and Engineering and Department of Materials Science and Engineering,

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
2Department of Materials Science and Engineering, Ohio State University, Columbus, Ohio 43210, USA

�Received 11 September 2005; published 5 January 2006�

A practical computational scheme based on time-dependent density functional theory �TDDFT� and ultrasoft
pseudopotentials �USPP� is developed to study electron dynamics in real time. A modified Crank-Nicolson
time-stepping algorithm is adopted, under plane-wave basis. The scheme is validated by calculating the optical
absorption spectra for a sodium dimer and a benzene molecule. As an application of this USPP-TDDFT
formalism, we compute the time evolution of a test electron packet at the Fermi energy of the left metallic lead
crossing a benzene-�1,4�-dithiolate junction. A transmission probability of 5–7%, corresponding to a conduc-
tance of 4.0–5.6 �S, is obtained. These results are consistent with complex band structure estimates and
Green’s function calculation results at small bias voltages.

DOI: 10.1103/PhysRevB.73.035408 PACS number�s�: 73.63.�b, 71.15.�m, 78.67.�n

I. INTRODUCTION

The development of molecular scale electronic devices
has attracted a great deal of interest in the past decade, al-
though major experimental and theoretical challenges still
exist.1–5 To date precise experimental control of molecular
conformation is lacking, resulting in large uncertainties in
the measured conductance. On the theory side, while the
Green’s function �GF� method has achieved many successes
in describing electron transport at the meso6,7 and
molecular8–12 scales, issues such as dynamical electron cor-
relation and large electron-phonon coupling effects13,14 are
far from fully resolved. Therefore, it is desirable to exploit
alternative approaches19,15–18,20,21 for comparison with the
mainstream GF calculations. In this paper, we describe a step
toward this goal by computing how an electron propagates
through a molecular junction in real time, based on the time-
dependent density functional theory22 �TDDFT�.

Density functional theory �DFT�23 with the Kohn-Sham
reference kinetic energy functional of a fictitious noninteract-
ing electron system24 is a leading method for treating many
electrons in solids and molecules.25 While initially formu-
lated to describe only the electronic ground state,23,24 it has
been rigorously extended by Runge and Gross22 to treat
time-dependent, driven systems �excited states�. TDDFT is,
therefore, a natural theoretical platform for studying electron
conduction at the nanoscale. There are two flavors in which
TDDFT is implemented. One is direct numerical
integration26–31 of the time-dependent Kohn-Sham �TDKS�
equations. The other is a Gedanken experiment of the former
with an added assumption of infinitesimal time-dependent
perturbation, so a linear response function may be first de-
rived in closed form,32–34 which is then evaluated numeri-
cally. These two implementations should give exactly the
same result when the external perturbation field is infinitesi-
mal. The latter implementation can be computationally more
efficient once the linear-response function has been analyti-
cally derived, while the former can treat noninfinitesimal
perturbations and arbitrary initial states.

A key step of the TDDFT dynamics is updating of the
Kohn-Sham effective potential by the present excited-state
charge density ��x , t�, V̂KS�t�= V̂KS���x , t� , . . . �. This is what
sets TDDFT apart from the ground-state DFT estimate of
excitation energies, even when TDDFT is applied in its crud-
est, so-called adiabatic approximation,32 whereby the same
exchange-correlation density functional form as the ground-
state DFT calculation is used �for example, the so-called
time-dependent local-density approximation �TDLDA�
uses exactly the same Ceperley-Alder-Perdew-Zunger
functional35,36 as the ground-state LDA calculation.� This
difference in excitation energies comes about because in a
ground-state DFT calculation, a virtual orbital such as lowest
unoccupied molecular orbital �LUMO� experiences an effec-
tive potential due to N electrons occupying the lowest N
orbitals; whereas in a TDDFT calculation, if one electron is
excited to a LUMO-like orbital, it sees N−1 electrons occu-
pying the lowest N−1 orbitals, plus its own charge density.
Also, the excitation energy is defined by the collective reac-
tion of this coupled dynamical system to time-dependent per-
turbation �pole in the response function�,37 rather than simple
algebraic differences between present virtual and occupied
orbital energies. For rather involved reasons beyond what is
discussed here, TDDFT under the adiabatic approximation
gives significantly improved excitation spectra,32,33 although
there is still much to be desired. Further systematic improve-
ments to TDDFT such as current density functional38 and
self-interaction correction39 have already made great strides.

Presently, most electronic conductance calculations based
on the Landauer transmission formalism40,41 have assumed a
static molecular geometry. In the Landauer picture, dissipa-
tion of the conducting electron energy is assumed to take
place in the metallic leads �electron reservoirs�, not in the
narrow molecular junction �channel� itself.42 Inelastic scat-
tering, however, does occur in the molecular junctions them-
selves, the effects appearing as peaks or dips in the measured
inelastic electron tunneling spectra �IETS�43 at molecular vi-
brational eigenfrequencies. Since heating is always an impor-

PHYSICAL REVIEW B 73, 035408 �2006�

1098-0121/2006/73�3�/035408�11�/$23.00 ©2006 The American Physical Society035408-1

http://dx.doi.org/10.1103/PhysRevB.73.035408


tant concern for high-density electronics, and because mo-
lecular junctions tend to be mechanically more fragile
compared to larger, semiconductor-based devices, the issue
of electron-phonon coupling warrants detailed
calculations.43,44 �Here we use the word phonon to denote
general vibrations when there is no translational symmetry.�
In the case of long �-conjugated polymer chain junctions,
strong electron-phonon coupling may even lead to elemen-
tary excitations and spin or charge carriers, called soliton
and/or polaron,13,14,45–47 where the electronic excitation is so
entangled with phonon excitation that separation is no longer
possible.

In view of the above background, there is a need for ef-
ficient TDDFT implementations that can treat complex
electron-electron and electron-phonon interactions in the
time domain. Linear-response-type analytic derivations can
become very cumbersome, and for some problems,48 may be
entirely infeasible. A direct time-stepping method26–31 analo-
gous to molecular dynamics for electrons as well as ions may
be more flexible and intuitive in treating some of these
highly complex and coupled problems, if the computational
costs can be managed. Such a direct time-stepping code also
can be used to double-check the correctness of analytic ap-
proaches such as the nonequilibrium Green’s function
�NEGF� method and electron-phonon scattering
calculations,43,44 most of which explicitly or implicitly use
the same set of TDDFT approximations �most often an adia-
batic approximation such as TDLDA�.

Two issues are of utmost importance when it comes to
computational cost: choice of basis sets and pseudopoten-
tials. For ground-state DFT calculations that involve a sig-
nificant number of metal atoms �e.g., surface catalysis�, the
method that tends to achieve the best cost-performance com-
promise is the ultrasoft pseudopotentials �USPP�49–51 with
plane-wave basis, and an independent and theoretically more
rigorous formulation, the projector augmented-wave
�PAW�52 method. Compared to the more traditional norm-
conserving pseudopotentials, USPP and PAW achieve dra-
matic cost savings for first-row p and d elements, with mini-
mal loss of accuracy. USPP and PAW are the workhorses in
popular codes such as VASP53 and DACAPO.54–56 We note that
similar to surface catalysis problems, metal-molecule inter-
action at contact is the key for electron conduction across
molecular junctions. Therefore, it seems reasonable to ex-
plore how TDDFT, specifically TDKS under the adiabatic
approximation, performs in the USPP and PAW frameworks,
which may achieve similar cost-performance benefits. This is
the main distinction between our approach and the software
package OCTOPUS,29,31 a TDDFT program with direct time
stepping, but which uses norm-conserving Troullier-Martins
�TM� pseudopotentials,57 and real-space grids. We will ad-
dress the theoretical formulation of TD-USPP �TD-PAW� in
Sec. II, and the numerical implementation of TD-USPP in
the direct time-stepping version in Sec. III.

To validate that the direct time-integration USPP-TDDFT
algorithm indeed works, we calculate the optical absorption
spectra of a sodium dimer and benzene molecule in Sec. IV
and compare them with experimental results and other
TDLDA calculations. As an application, we perform a com-
puter experiment in Sec. V which is a verbatim implementa-

tion of the original Landauer picture.41,42 An electron wave
pack comes from the left metallic lead �one-dimensional
�1D� Au chain� with an energy that is exactly the Fermi
energy of the metal �the Fermi electron�, and undergoes scat-
tering by the molecular junction �benzene-�1,4�-dithiolate
�BDT��. The probability of electron transmission is carefully
analyzed in density vs x , t plots. The point of this exercise is
to check the stability and accuracy of the time integrator,
rather than to obtain new results about the Au-BDT-Au junc-
tion conductance. We check the transmission probability thus
obtained with simple estimate from complex band structure
calculations,58,59 and Green’s function calculations at small
bias voltages. Both seem to be consistent with our calcula-
tions. Lastly, we give a brief summary in Sec. VI.

II. TDDFT FORMALISM WITH ULTRASOFT
PSEUDOPOTENTIALS

The key idea49–52 of USPP/PAW is a mapping of the true

valence electron wave function �̃�x� to a pseudowave func-

tion ��x�: �̃↔�, as in any pseudopotential scheme. How-
ever, by discarding the requirement that ��x� must be norm-

conserved ��� ���=1� while matching �̃�x� outside the
pseudopotential cutoff, a greater smoothness of ��x� in the
core region can be achieved; and therefore, fewer plane
waves are required to represent ��x�. In order for the physics
to still work, one must define augmentation charges in the
core region and solve a generalized eigenvalue problem,

Ĥ��n� = �nŜ��n� , �1�

instead of the traditional eigenvalue problem, where Ŝ is a

Hermitian and positive definite operator. Ŝ specifies the fun-
damental measure of the linear Hilbert space of pseudowave
functions. Physically meaningful inner product between two

pseudowave functions is always �� � Ŝ ���� instead of �� ����.
For instance, ��m ��n���mn between the eigenfunctions of
�1� because it is actually not physically meaningful, but

��m � Ŝ ��n����̃m � �̃n�=�mn is meaningful. �Please note that �̃
is used to denote the true wave function with nodal structure,
and � to denote the pseudowave function, which are opposite
in some papers.�

Ĥ consists of the kinetic energy operator T̂, ionic local

pseudopotential V̂L, ionic nonlocal pseudopotential V̂NL,

Hartree potential V̂H, and exchange-correlation potential

V̂XC,

Ĥ = T̂ + V̂L + V̂NL + V̂H + V̂XC. �2�

The Ŝ operator is given by

Ŝ = 1 + 	
i,j,I

qij
I �� j

I���i
I� , �3�

where i��	lm� is the angular momentum channel number,

and I labels the ions. Ŝ contains contributions from all ions in
the supercell, just as the total pseudopotential operator
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V̂L+ V̂NL, which is the sum of pseudopotential operators of
all ions. In above, the projector function �i

I�x���x ��i
I� of

atom I’s channel i is

�i
I�x� = �i�x − XI� , �4�

where XI is the ion position, and �i�x� vanishes outside the
pseudopotential cutoff. These projector functions appear in
the nonlocal pseudopotentials

V̂NL = 	
i,j,I

Dji
I �� j

I���i
I� , �5�

as well, where

Dji
I = Dji

I�0� +
 dx�VL�x� + VH�x� + VXC�x��Qji
I �x� . �6�

The coefficients Dji
I�0� are the unscreened scattering strengths,

while the coefficients Dji
I need to be self-consistently updated

with the electron density

��x� = 	
n
���n�2 + 	

i,j,I
Qji

I �x���n�� j
I���i

I��n�� f��n� , �7�

in which f��n� is the Fermi-Dirac distribution. Qji
I �x� is the

charge augmentation function, i.e., the difference between
the true wave function charge �interference� and the pseudo-
charge for selected channels,

Qji
I �x� � �̃ j

I*�x��̃i
I�x� − � j

I*�x��i
I�x� , �8�

which vanishes outside the cutoff. There is also

qij
I �
 dxQji

I �x� . �9�

The terms in Eq. �7� are evaluated using two different grids,
a sparse grid for the wave functions �n and a dense grid for
the augmentation functions Qji

I �x�. Ultrasoft pseudopotentials
are thus fully specified by the functions VL�x�, �i

I�x�, Dji
I�0�,

and Qji
I �x�. Forces on ions and internal stress on the supercell

can be derived analytically using linear-response theory.51,53

To extend the above ground-state USPP formalism to the

time-dependent case, we note that the Ŝ operator in �1� de-
pends on the ionic positions 
XI� only and not on the elec-
tronic charge density. In the case that the ions are not mov-
ing, the following dynamical equations are equivalent:

Ĥ�t��n�t� = i
�t�Ŝ�n�t�� = Ŝ�i
�t�n�t�� , �10�

whereby we have replaced the �n in �1� by the i
�t operator,

and Ĥ�t� is updated using the time-dependent ��x , t�. How-
ever, when the ions are moving,

i
�tŜ � Ŝ�i
�t� �11�

with difference proportional to the ionic velocities. To re-

solve this ambiguity, we note that Ŝ can be split as

Ŝ = �Ŝ1/2Û��Û†Ŝ1/2� , �12�

where Û is a unitary operator, ÛÛ†= Î, and we can rewrite
�1� as

�Û†Ŝ−1/2�Ĥ�Ŝ−1/2Û��Û†Ŝ1/2��n = �n�Û†Ŝ1/2��n. �13�

Referring to the PAW formulation,52 we can select Û such

that Û†Ŝ1/2 is the PAW transformation operator

Û†Ŝ1/2 = T̂ � 1 + 	
i,I

���̃i
I� − ��i

I����i
I�: �n

˜ = T̂�n, �14�

that maps the pseudowave function to the true wave func-
tion. So we can rewrite �13� as,

�Û†Ŝ−1/2�Ĥ�Ŝ−1/2Û��n
˜ � H̃

ˆ
�n
˜ = �n�n

˜ , �15�

where H̃
ˆ

is then the true all-electron Hamiltonian �with core-
level electrons frozen�. In the all-electron TDDFT procedure,
the above �n is replaced by the i
�t operator. It is thus clear
that a physically meaningful TD-USPP equation in the case
of moving ions should be

�Û†Ŝ−1/2�Ĥ�Ŝ−1/2Û��Û†Ŝ1/2��n = i
�t��Û†Ŝ1/2��n� , �16�

or

�Û†Ŝ−1/2�Ĥ�n = i
�t��Û†Ŝ1/2��n� . �17�

In the equivalent PAW notation, it is simply

�T̂†�−1Ĥ�n = i
�t�T̂�n� . �18�

Or, in pseudized form amenable to numerical calculations,

Ĥ�n = i
T̂†��t�T̂�n�� = i
�T̂†T̂��t�n� + T̂†��tT̂��n� . �19�

Differentiating �14�, there is,

�tT̂ = 	
i,I

� ����̃i
I� − ��i

I��
�XI

��i
I� + ���̃i

I� − ��i
I��

���i
I�

�XI
�ẊI,

�20�

and so we can define and calculate

P̂ � − i
T̂†��tT̂� = 	
I

P̂I · ẊI �21�

operator, similar to analytic force calculation,51 where

P̂I � − i
T̂†	
i

� ����̃i
I� − ��i

I��
�XI

��i
I� + ���̃i

I� − ��i
I��

���i
I�

�XI
� .

�22�

The TD-USPP and TD-PAW equations, therefore, can be re-
arranged as,

�Ĥ + P̂��n = i
Ŝ��t�n� , �23�

with P̂ proportional to the ionic velocities. It is basically the
same as the traditional TDDFT equation, but taking into ac-
count the moving spatial “gauge” due to ion motion. As
such, it can be used to model electron-phonon coupling,44

cluster dynamics under strong laser field,48 etc., as long as
the pseudopotential cores are not overlapping, and the core-
level electrons are not excited.
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At each time step, one should update ��x , t� as

��x,t� = 	
n
���n�x,t��2 + 	

i,j,I
Qji

I �x���n�t��� j
I���i

I��n�t��� fn.

�24�

Note that while �n�x , t=0� may be an eigenstate if we start
from the ground-state wave functions, �n�x , t�0� generally
is no longer so with the external field turned on. Therefore, n
is merely used as a label based on the initial state rather than
an eigenstate label at t�0. fn, on the other hand, always
maintains its initial value, fn�t�= fn�0�, for a particular simu-
lation run.

One may define projection operator t̂I belonging to atom I
as follows:

t̂I � 	
i

���̃i
I� − ��i

I����i
I� . �25�

t̂I spatially has finite support, and so is

� t̂I

�XI
= −

� t̂I

�x
= −

��1 + t̂I�
�x

= �1 + t̂I� � − ��1 + t̂I� . �26�

Therefore, P̂I in �21� is

P̂I = − i
T̂† � t̂I

�XI

= − i
�1 + t̂I
†�

� t̂I

�XI

= − i
�1 + t̂I
†���1 + t̂I� � − ��1 + t̂I��

= �1 + t̂I
†��1 + t̂I�p − �1 + t̂I

†�p�1 + t̂I� , �27�

where p is the electron momentum operator. Unfortunately,

P̂I and, therefore, P̂ are not Hermitian operators. This means
that the numerical algorithm for integrating �23� may be dif-
ferent from the special case of immobile ions

Ĥ�t��n = i
Ŝ��t�n� . �28�

Even if the same time-stepping algorithm is used, the error
estimates would be different. In Sec. III, we discuss algo-
rithms for integrating �28� only, and postpone detailed dis-
cussion of integration algorithm and error estimates for
coupled ion-electron dynamics �23� under USPP to a later
paper.

III. TIME-STEPPING ALGORITHMS FOR THE CASE
OF IMMOBILE IONS

In this section, we focus on the important limiting case of
�28�, where the ions are immobile or can be approximated as
immobile. We may rewrite �28� formally as

Ŝ−1/2Ĥ�t�Ŝ−1/2�Ŝ1/2�n� = i
�t�Ŝ1/2�n� . �29�

And so the time evolution of �28� can be formally expressed
as

�n�t� = Ŝ−1/2T̂�exp�−
i






0

t

dt�Ŝ−1/2Ĥ�t��Ŝ−1/2��Ŝ1/2�n�0� ,

�30�

with T̂ the time-ordering operator. Algebraic expansions of
different order are then performed on the above propagator,
leading to various numerical time-stepping algorithms.

A. First-order implicit Euler integration scheme

To first-order accuracy in time there are two well-known
propagation algorithms, namely, the explicit �forward� Euler

i
Ŝ
�n�t + �t� − �n�t�

�t
= Ĥ�n�x,t� �31�

and implicit �backward� Euler

i
Ŝ
�n�t + �t� − �n�t�

�t
= Ĥ�n�t + �t� �32�

schemes. Although the explicit scheme �31� is less expensive
computationally, our test runs indicate that it always diverges
numerically. The reason is that �28� has poles on the imagi-
nary axis, which are marginally outside of the stability do-
main �Re�z�t�
0� of the explicit algorithm. Therefore, only
the implicit algorithm can be used, which upon rearrange-
ment is

�Ŝ +
i



Ĥ�t��n�t + �t� = Ŝ�n�t� . �33�

In the above, we still have the choice of whether to use Ĥ�t�
or Ĥ�t+�t�. Since this is a first-order algorithm, neither
choice would influence the order of the local truncation error.
Through numerical tests, we found that the implicit time dif-
ferentiation in �32� already imparts sufficient stability that

the Ĥ�t+�t� operator is not needed. Therefore, we will solve

�Ŝ +
i



Ĥ�t��t��n�t + �t� = Ŝ�n�t� �34�

at each time step. Direct inversion turns out to be computa-
tionally infeasible in large-scale plane wave calculations. We
solve �34� iteratively using matrix-free linear equation solv-
ers such as the conjugate gradient method. Starting from the
wave function of a previous time step, we find that typically
it takes about three to five conjugate gradient steps to
achieve sufficiently convergent update.

One serious drawback of this algorithm is that norm con-
servation of the wave function

��n�t + �t��Ŝ��n�t + �t�� = ��n�t��Ŝ��n�t�� �35�

is not satisfied exactly, even if there is perfect floating-point
operation accuracy. So one has to renormalize the wave func-
tion after several time steps.
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B. First-order Crank-Nicolson integration scheme

We find the following Crank-Nicolson expansion31,60,61 of
propagator �30�

Ŝ1/2�n�t + �t� =

1 −
i

2

Ŝ−1/2Ĥ�t�Ŝ−1/2�t

1 +
i

2

Ŝ−1/2Ĥ�t�Ŝ−1/2�t

Ŝ1/2�n�t� �36�

stable enough for practical use. The norm of the wave func-
tion is conserved explicitly in the absence of roundoff errors,
because of the spectral identity

� 1 −
i

2

Ŝ−1/2ĤŜ−1/2�t

1 +
i

2

Ŝ−1/2ĤŜ−1/2�t� = 1. �37�

Therefore, �35� is satisfied in an ideal numerical computa-
tion, and in practice, one does not have to renormalize the
wave functions in thousands of time steps.

Writing out the �36� expansion explicitly, we have

�Ŝ +
i

2

Ĥ�t��t��n�t + �t� = �Ŝ −

i

2

Ĥ�t��t��n�t� .

�38�

Similar to �34�, we solve Eq. �38� using the conjugate
gradient linear equations solver. This algorithm is still

first-order because we use Ĥ�t�, not �Ĥ�t�+ Ĥ�t+�t�� /2, in
�38�. In the limiting case of time-invariant charge density,

��x , t�=��x ,0� and Ĥ�t+�t�= Ĥ�t�, the algorithm has
second-order accuracy. This may happen if there is no exter-
nal perturbation and we are simply testing whether the algo-
rithm is stable in maintaining the eigenstate phase oscilla-
tion: �n�t�=�n�0�e−i�t, or in the case of propagating a test
electron, which carries an infinitesimal charge and would not

perturb Ĥ�t�.

C. Second-order Crank-Nicolson integration scheme

We note that replacing Ĥ�t� by (Ĥ�t�+ Ĥ�t+�t)� /2 in �36�
would enhance the local truncation error to second order,
while still maintaining norm conservation. In practice, we of

course do not know Ĥ�t+�t� exactly, which depends on
��t+�t� and, therefore, �n�t+�t�. However, a sufficiently
accurate estimate of ��t+�t� can be obtained by running �38�
first for one step, from which we can get

���t + �t� = ��t + �t� + O��t2� ,

Ĥ��t + �t� = Ĥ�t + �t� + O��t2� . �39�

After this “predictor” step, we can solve

�Ŝ +
i�Ĥ�t� + Ĥ��t + �t���t

4

��n�t + �t�

= �Ŝ −
i�Ĥ�t� + Ĥ��t + �t���t

4

��n�t� �40�

to get the more accurate, second-order estimate for
�n�t+�t�, that also satisfies �35�.

IV. OPTICAL ABSORPTION SPECTRA

Calculating the optical absorption spectra of molecules,
clusters, and solids is one of the most important
applications26–30,32,33,62–64 of TDDFT. Since many experi-
mental and standard TDLDA results are available for com-
parison, we compute the spectra for a sodium dimer �Na2�
and a benzene molecule �C6H6� to validate our direct time-
stepping USPP-TDDFT scheme.

We adopt the method by Bertsch et al.26,63 whereby an

impulse electric field E�t�=�
k̂��t� /e is applied to the sys-

tem at t=0, where k̂ is a unit vector and � is a small quantity.
The system, which is at its ground state at t=0−, would un-
dergo transformation

�̃n�x,t = 0+� = ei�k̂·x�̃n�x,t = 0−� , �41�

for all its occupied electronic states, n=1. . .N, at t=0+. Note
that the true, unpseudized wave functions should be used in
�41� if theoretical rigor is to be maintained.

One may then evolve 
�̃n�x , t� ,n=1. . .N� using a time
stepper, with the total charge density ��x , t� updated at every
step. The electric dipole moment d�t� is calculated as

d�t� = e
 d3x��x,t�x . �42�

In a supercell calculation, one needs to be careful to have a
large enough vacuum region surrounding the molecule at the
center, so no significant charge density can “spill over” the
periodic boundary, thus causing a spurious discontinuity in
d�t�.

The dipole strength tensor S��� can be computed by

S���k̂ = m���

�
2me�

e
�
lim

�,�→0

1

�



0

�

dt sin��t�e−�t2�d�t� − d�0�� ,

�43�

where � is a small damping factor and me is the electron
mass. In reality, the time integration is truncated at tf, and �

should be chosen such that e−�tf
2
�1. The merit of this and

similar time-stepping approaches37 is that the entire spectrum
can be obtained from just one calculation.

For a molecule with no symmetry, one needs to carry out
Eq. �41� with subsequent time integration for three indepen-

dent k̂’s: k̂1, k̂2, k̂3, and obtain three different m1���, m2���,
m3��� on the right-hand side of Eq. �43�. One then solves the
matrix equation
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S����k̂1 k̂2 k̂3� = �m1���m2���m3����→

S��� = �m1���m2���m3�����k̂1k̂2k̂3�−1. �44�

S��� satisfies the Thomas-Reiche-Kuhn f-sum rule,

N�ij = 

0

�

d�Sij��� . �45�

For gas-phase systems where the orientation of the molecule
or cluster is random, the isotropic average of S���

S��� �
1

3
Tr S��� �46�

may be calculated and plotted.
In actual calculations employing norm-conserving

pseudopotentials,29 the pseudowave functions �n�x , t� are
used in �41� instead of the true wave functions. And so the
oscillator strength S��� obtained is not formally exact. How-
ever, the f-sum rule, Eq. �45�, is still satisfied exactly. With
the USPP/PAW formalism,49–52 formally we should solve

T̂�n�x,t = 0+� = ei�k̂·xT̂�n�x,t = 0−� , �47�

using a linear equation solver to get �n�x , t=0+�, and then
propagate �n�x , t�. However, for the present paper, we skip

this step and replace �̃n by �n in �41� directly. This “quick-
and-dirty fix” makes the oscillator strength not exact and also
breaks the sum rule slightly. However, the peak positions are
still correct.

For the Na2 molecule, we use the norm-conserving TM

pseudopotential, treated as a special case �Ŝ=1� in our
USPP-TDDFT code. The supercell is a tetragonal box of
12�10�10 Å3 and the Na2 cluster is along the x direction
with a bond length of 3.0 Å. The plane-wave basis has a
kinetic energy cutoff of 300 eV. The time integration is car-

ried out for 10 000 steps with a time step of �t=1.97 as, and
�=0.01/Å, �=0.02 eV2/
2. In the dipole strength plot
�Fig. 1�, the three peaks agree very well with TDLDA result
from OCTOPUS,63 and differ by �0.4 eV from the experimen-
tal peaks.63,65,66 In this case, the f-sum rule is verified to be
satisfied to within 0.1% numerically.

For the benzene molecule, ultrasoft pseudopotentials are
used for both carbon and hydrogen atoms. The calculation is
performed in a tetragonal box of 12.94�10�7 Å3 with the
benzene molecule placed on the xy plane. The C-C bond
length is 1.39 Å and the C-H bond length is 1.1 Å. The
kinetic energy cutoff is 250 eV, �=0.01/Å, �=0.1 eV2/
2,
and the time integration is carried out for 5000 steps with a
time step of �t=2.37 as. In the dipole strength function plot
�Fig. 2�, the peak at 6.95 eV represents the �→�* transition
and the broad peak above 9 eV corresponds to the �→�*

transition. The dipole strength function agrees very well with
other TDLDA calculations27,29 and experiment.67 The slight
difference is mostly due to our ad hoc approximation that

�n’s instead of �̃n’s are used in �41�. The more formally
rigorous implementation of the electric impulse perturbation,
Eq. �47�, will be performed in future work.

In this section, we have verified the soundness of our time
stepper with plane-wave basis through two examples of ex-
plicit electronic dynamics, where the charge density and ef-
fective potential are updated at every time step, employing
both norm-conserving and ultrasoft pseudopotentials. This
validation is important for the following nonperturbative
propagation of electrons in more complex systems.

V. FERMI ELECTRON TRANSMISSION

We first briefly review the setup of the Landauer transmis-
sion equation,40–42 before performing an explicit TDDFT
simulation. In its simplest form, two identical metallic leads
�see Fig. 3� are connected to a device. The metallic lead is so
narrow in y and z that only one channel �lowest quantum

FIG. 1. �Color online� Optical absorption spectra of Na2 cluster
obtained from direct time-stepping TDLDA calculation using norm-
conserving TM pseudopotentials. The results should be compared
with Fig. 1 of Marques et al. �Ref. 63�.

FIG. 2. �Color online� Optical absorption spectrum of benzene
�C6H6� molecule. The results should be compared with Fig. 2 of
Marques et al. �Ref. 29�.
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number in the y ,z quantum well� needs to be considered. In
the language of band structure, this means that one and only
one branch of the 1D band structure crosses the Fermi level
EF for kx�0. Analogous to the universal density of states
expression dN=2�dkxdkydkz / �2��3 for three-dimensional
�3D� bulk metals, where � is the volume and the factor of 2
accounts for up and down spins, the density of state of such
a 1D system is simply

dN =
2Ldkx

2�
. �48�

In other words, the number of electrons per unit length with
wave vector ��kx ,kx+dkx� is just dkx /�. These electrons
move with group velocity68

vG =
dE�kx�

dkx

, �49�

so there are �dkx /���dE�kx� / �
dkx��=2dE /h such electrons
hitting the device from either side per unit time.

Under a small bias voltage dV, the Fermi level of the left
lead is raised to EF+edV /2, while that of the right lead drops
to EF−edV /2. The number of electrons hitting the device
from the left with wave vector �kx ,kx+dkx� is exactly equal
to the number of electrons hitting the device from the right
with wave vector �−kx ,−kx−dkx�, except in the small energy
window �EF−edV /2 ,EF+edV /2�, where the right has no
electrons to balance against the left. Thus, a net number of
2�edV� /h electrons will attempt to cross from left and right,
whose energies are very close to the original EF. Some of
them are scattered back by the device, and only a fraction of
T� �0,1� gets through. So the current they carry is

� dI

dV
�

V=0
=

2e2

h
T�EF� , �50�

where 2e2 /h=77.481 �S= �12.906 k��−1.
Clearly, if the device is also of the same material and

structure as the metallic leads, then T�EF� should be 1, when
we ignore electron-electron and electron-phonon scattering.
This can be used as a sanity check of the code. For a non-
trivial device, however, such as a molecular junction, T�EF�
would be smaller than 1, and would sensitively depend on
the alignment of the molecular levels and EF, as well as the
overlap between these localized molecular states and the me-
tallic states.

Here we report two USPP-TDDFT case studies along
the line of the above discussion. One is an infinite
defect-free gold chain �Fig. 4�a��. The other case uses
gold chains as metallic leads and connects them to a
-S-C6H4-S-�benzene-�1,4�-dithiolate� molecular junction
�Fig. 4�b��.

In the semiclassical Landauer picture explained above, the
metallic electrons are represented by very wide Gaussian
wave packs68 moving along with the group velocity vG and
with negligible rate of broadening compare to vG. Due to
limitation of computational cost, we can only simulate rather
small systems. In our experience with 1D lithium and gold
chains, a Gaussian envelop of 3–4 lattice constants in full
width half maximum is sufficient to propagate at the Fermi
velocity vG�kF� with 100% transmissions and maintain its
Gaussian-profile envelop with little broadening for several
femtoseconds.

A. Fermi electron propagation in gold chain

The ground-state electronic configurations of pure gold
chains are calculated using the free USPP-DFT package
DACAPO,54–56 with local density functional �LDA�35,36 and
plane wave kinetic energy cutoff of 250 eV. The ultrasoft
pseudopotentials are generated using the free package USPP

�version 7.3.3�,49–51 with 5d, 6s, 6p, and auxiliary channels.
Figure 4�a� shows a chain of 12 Au atoms in a tetragonal
supercell �34.56�12�12 Å3�, with equal Au-Au bond
length of a0=2.88 Å. Theoretically, 1D metal is always un-
stable against period-doubling Peierls distortion.68,69 How-
ever, the magnitude of the Peierls distortion is so small in the
Au chain that room-temperature thermal fluctuations will
readily erase its effect. For simplicity, we constrain the me-
tallic chain to maintain single periodicity. Only the �-point
wave functions are considered for the 12-atom configuration.

The Fermi level EF is found to be −6.65 eV, which is
confirmed by a more accurate calculation of a one-Au-atom
system with k sampling �Fig. 5�. The Fermi state is doubly
degenerate due to the time-inversion symmetry, correspond-
ing to two Bloch wave functions of opposite wave vectors kF
and −kF.

From the �-point calculation, two energetically degener-
ate and real eigenwave functions, �+�x� and �−�x�, are ob-
tained. The complex traveling wave function is reconstructed
as

FIG. 3. Illustration of the Landauer transmission formalism.

FIG. 4. �Color online� Atomistic configurations of our USPP-
TDDFT simulations. Au: yellow �light gray�, S: magenta �large dark
gray�, C: black �small dark gray�, and H: white. �a� A 12-atom Au
chain. Bond length: Au-Au 2.88 Å. �b� BDT �-S-C6H4-S-� junction
connected to Au chain contacts. Bond lengths: Au-Au 2.88 Å,
Au-S 2.41 Å, S-C 1.83 Å, C-C 1.39 Å, and C-H 1.1 Å.
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�kF
�x� =

�+�x� + i�−�x�
�2

. �51�

The phase velocity of �kF
�x , t� computed from our TDLDA

runs matches the Fermi frequency EF /
. We use the integra-
tion scheme �38� and a time step of 2.37 as.

We then calculate the Fermi electron group velocity
vG�kF� by adding a perturbation modulation of

�˜kF
�x,t = 0� = �kF

�x��1 + � sin�2�x/L�� �52�

to the Fermi wave function �kF
�x�, where � is 0.02 and L is

the x length of the supercell. Figure 6 shows the electron

density plot along two axes, x and t. From the dashed line
connecting the black-lobe edges, one can estimate the Fermi
electron group velocity to be �10.0 Å/fs. The Fermi group
velocity can also be obtained analytically from Eq. �49� at
kx=kF. A value of 10 Å/fs is found according to Fig. 5, con-
sistent with the TDLDA result.

Lastly, the angular momentum projected densities of
states are shown in Fig. 7, which indicate that the Fermi
wave function mainly has s and px characteristics.

B. Fermi electron transmission through Au-BDT-Au junction

At small bias voltages, the electric conductance of a mo-
lecular junction �Fig. 4�b�� is controlled by the transmission
of Fermi electrons, as shown in Eq. �50�. In this section, we

FIG. 5. Band structure of a one-atom Au chain with 64
Monkhorst-Pack �Ref. 70� k sampling in the chain direction. The
Fermi level, located at −6.65 eV, is marked as the dashed line.

FIG. 6. �Color online� Evolution of modulated Fermi electron
density in time along the chain direction. The electron density, in
the unit of Å−1, is an integral over the perpendicular yz plane and
normalized along the x direction, which is then color coded.

FIG. 7. �Color online� Projected density of states �PDOS� of the
12-atom Au chain.

FIG. 8. �Color online� Evolution of filtered wave package den-
sity in time along the chain direction. The electron density, in the
unit of Å−1, is a sum over the perpendicular yz plane and normal-
ized along the x direction. The normalized electron density is color
coded by the absolute value.
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start from the Fermi electron wave function of a perfect 1D
gold chain �Fig. 4�a�� and apply a Gaussian window centered
at x0 with a half width of � to obtain a localized wave pack

�˜kF
�x,t = 0� = �kF

�x�G�x − x0

�
� �53�

at the left lead. This localized Fermi electron wave pack is
then propagated in real time by the TDLDA-USPP algorithm
�38� with a time step of 2.37 as, leaving from the left Au lead
and traversing across the -S-C6H4-S- molecular junction
�Fig. 4�b��. While crossing the junction, the electron will be
scattered, after which we collect the electron density entering
the right Au lead to compute the transmission probability
T�EF� literally. The calculation is performed in a tetragonal
box �42.94�12�12 Å3� with a kinetic energy cutoff of
250 eV.

Figure 8 shows the Fermi electron density evolution in
x-t. A group velocity of 10 Å/fs is obtained from the initial
wave pack center trajectory, consistent with the perfect Au
chain result. This free propagation lasts for about 0.8 fs, fol-
lowed by a sharp density turnover that indicates the occur-
rence of strong electron scattering at the junction. A very
small portion of the wave pack goes through the molecule.
After about 1.7 fs, the reflected portion of the wave pack
enters the right side of the supercell through periodic bound-
ary condition �PBC�.

To separate the transmitted density from the reflected den-
sity as clearly as possible, we define and calculate the fol-
lowing cumulative charge on the right side

R�x�,t� � 

xS

x�
dx


0

Ly

dy

0

Lz

dz��x,y,z,t� , �54�

where xS is the position of the right sulfur atom. R�x� , t� is
plotted in Fig. 9 for ten x� positions starting from the right
sulfur atom up to the right boundary Lx. A shoulder can be

seen in all ten curves, at t=1.5–2 fs, beyond which R�x� , t�
starts to rise sharply again, indicating that the reflected den-
sity has entered from the right boundary. Two solid
curves are highlighted in Fig. 9. The lower curve is at
x�=xS+7.2 Å, which shows a clear transmission plateau of
about 5%. The upper curve, which is for x� exactly at the
right PBC boundary, shows R�x� , t��7% at the shoulder.
From these two curves, we estimate a transmission probabil-
ity T�EF� of 5–7%, which corresponds to a conductance of
4.0–5.6 �S according to Eq. �50�. This result from plane-
wave TDLDA-USPP calculation is comparable to the trans-
mission probability estimate of 10% from complex band
structure calculation58,59 for one benzene linker �-C6H4-�
without the sulfur atoms, and the nonequilibrium Green’s
function estimate of 5 �S11 for the similar system.

VI. SUMMARY

In this paper, we develop TDDFT based on Vanderbilt
ultrasoft pseudopotentials and benchmark this USPP-TDDFT
scheme by calculating optical absorption spectra, which
agree with both experiments and other TDDFT calculations.
We also demonstrate a practical approach to compute the
electron conductance through a single-molecule junction via
wave pack propagation using TDDFT. The small conduc-
tance of 4.0–5.6 �S is a result of our fixed band approxima-
tion, assuming the electron added was a small testing elec-
tron and, therefore, generated little disturbing effects of the
incoming electrons on the electronic structure of the junc-
tion. This result is of the same order of magnitude as the
results given by the Green’s function and the complex band
approaches, both requiring similar assumptions.
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