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a b s t r a c t

The atomistic pathways of deformation twinning can be computed ab initio, and quantified
by two variables: strain which describes shape change of a periodic supercell, and shuffling
which describes non-affine displacements of the internal degrees of freedom. The mini-
mum energy path involves juxta-position of both. But if one can obtain the same saddle
point by continuously increasing the strain and relaxing the internal degrees of freedom by
steepest descent, we call the path strain-controlled, and vice versa. Surprisingly, we find
the f1012g〈1011〉 twinning of Mg is shuffling-controlled at the smallest lengthscale of the
irreducible lattice correspondence pattern, that is, the reaction coordinate at the level of 4
atoms is dominated by non-affine displacements, instead of strain. Shuffling-controlled
deformation twinning is expected to have different temperature and strain-rate sensitiv-
ities from strain-controlled deformation twinning due to relatively weaker strength of
long-range elastic interactions, in particular at the twin nucleation stage. As the twin
grows large enough, however, elastic interactions and displacive character of the trans-
formation should always turn dominant.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The energetics of deformation twinning (DT) has not been sufficiently clarified from first-principles, especially for the
twinning systems in non-cubic and/or complex lattices, like the f1012g〈1011〉 twinning system of HCPmetals, which requires
not only affine transformation strain but also non-affine atomic shuffling displacements. In this paper, we propose a rigorous
mathematical definition of the strain-controlled vs. shuffling-controlled twinning at the smallest possible lengthscale (the
irreducible lattice correspondence pattern) based on first-principles energetics. This approach allows us to properly define
and understand the underlying mechanism and temperature/rate sensitivities of DT that accomplishes both Eshelby trans-
formation strain and atomic shuffling, launching long- and short-ranged interaction, respectively. Moreover, some of the
concepts we develop should be applicable to general solidesolid transformations, like martensitic transformations, Bainitic
transformation, and the alike. We will separate the non-affine atomic shuffling with the instantaneous affine strain at the
smallest lattice correspondence pattern level as the “shuffling” and “strain” variables, and compute the Gibbs free energy
cal Science and Bioengineering, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531,

.es.osaka-u.ac.jp (S. Ogata).

mailto:liju@mit.edu
mailto:ogata@me.es.osaka-u.ac.jp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijplas.2016.01.019&domain=pdf
www.sciencedirect.com/science/journal/07496419
www.elsevier.com/locate/ijplas
http://dx.doi.org/10.1016/j.ijplas.2016.01.019
http://dx.doi.org/10.1016/j.ijplas.2016.01.019
http://dx.doi.org/10.1016/j.ijplas.2016.01.019


A. Ishii et al. / International Journal of Plasticity 82 (2016) 32e43 33
landscape and minimum energy path (MEP) (Jonsson et al., 1998) of DT nucleation in this joint “shuffling”-“strain” space. But
if one can obtain the same MEP and saddle energy by continuously cranking just the shuffling “internal cog”, and instan-
taneously relaxing the strain by steepest descent, we call the path “shuffling-controlled”. And vice versa, if one can obtain the
same MEP and saddle energy by continuously increasing the strain and relaxing the internal non-affine displacement by
steepest descent, we call the path “strain-controlled”.

Deformation twinning (Christian and Mahajan, 1995) transforms crystal to a mirrored configuration with transformation
strain εfinal. The basic cell of transformation (lattice correspondence pattern), or DT supercell, can be larger than the primitive
cell of the host lattice. One may represent DT atomistically by

xmðlÞ ¼ HðlÞsmðlÞ; HðlÞ ¼ RðlÞðIþ 2εðlÞÞ1=2H0; (1)

where l is the reaction progress variable (scalar), xm is the Cartesian position and sm¼[sm1; sm2; sm3]2[0,1) the reduced
coordinate vector of atomm under periodic boundary condition (PBC),H¼[h1h2h3] is a 3� 3matrix where h1, h2, h3 are three
edge vectors of the DT supercell, and m ¼ 1..M is the index of atoms in the DT supercell. ðIþ 2εðlÞÞ1=2 and R(l) is the irro-
tational and rotational part of the deformation gradient, respectively, where ε(l) is the Lagrangian strain with respect to the
initial configuration. The representation (1) is general and versatile in the sense that it can be used to represent liquid or solid
geometries in molecular dynamics simulations that have general displacive and diffusive motions. Here, however, we would
like to take the integerM to be as small as possible (that of the minimal, or irreducible lattice correspondence pattern) while
still representing the key bonding pattern and bond-switching physics of the real DT process (Ogata et al., 2005). We believe
that although DT in reality must be a heterogeneous and asynchronous transformation, the irreducibleM (that is, the smallest
possible lattice correspondence repeat pattern) should still give some essential, material-specific energetic information about
the process. We can then compute the minimum energy path (MEP) (Jonsson et al., 1998) with the least M using parameter-
free ab initio calculation at constant external stress s, that gives the activation Gibbs energy G(l, s) vs. reaction coordinate l,
parametrized by s. This “voxel-level” activation energy profile can then be fed into mesoscale kinetic Monte Carlo (kMC)
simulations, to represent large-scale thermally activated heterogeneous DT, with long-range elastic interactions between the
voxels (Zhao et al., 2013). The long-range elastic interactions arise because two different voxels V andWat positions xV sx W
in the coarse-grained kMC simulation could be at different stages of reaction progress at any given moment

εðlVÞsεðlWÞ (2)

and such voxel-to-voxel heterogeneity in the transformation strain would cause f
���xV � xW

����3
type coupling through an

elastic medium, that also determine the local stress sV, sW by convolution (Bulatov and Argon, 1994). We also note that such
elastic interaction energy kernel is likely inaccurate when V and W voxels are adjacent to each other. Two adjacent voxels
with {εV, sV}, {εW, sW}, where long vector s ≡ [s1;s2;…sM] denotes the internal or shuffling coordinates, will likely have an
interaction that depends also on sV, sW, and not just the strains. However, due to generalized Saint-Venant's principle, these
shuffling dependent interactions are expected to decay much faster than the strainestrain interactions, so in the long range
one can keep only the leading-order term which depends only on εV, εW and not on sV, sW. While we will not pursue this
coarse-grained simulation in detail (Bulatov and Argon, 1994; Zhao et al., 2013) in this paper, the coarse-graining concept is
very important for understanding what the activation energy profile G(l, s), computed for the least M that is still repre-
sentative of the bonding energetics, means and could be useful for.

Because strain and shuffling occupy different positions in the coarse-grained total-energy framework (illustrated above for
the long-range elastic interactions, which care about the strain variable only), it is critical to distinguish whether G(l, s) is
strain-controlled or shuffling-controlled. In principle one should apply algorithm to compute MEP and the saddle point of
solidesolid transformation:

QðsÞ≡G�l*;s�� Gð0;sÞ (3)

on the joint ε 5 s space (Sheppard et al., 2012), where one uses l ¼ 0 to denote state before transformation, l ¼ 1 to denote
state after transformation, and l* for saddle-point, at constant external stress s. The key question is whether the MEP or
reaction coordinate is dominated by Ds or Dε, at the minimal supercell level.

Two opposite physical limits can be identified. In the diffusive grain growth limit (e.g. annealing twin formation), εfinalz 0
because curvature-driven grain growth involves short-range diffusion, grain boundary motion but little strain before and
after. And because of the randomized short-range diffusion that destroys labeled atom registry (if same-type, so-called
“indistinguishable” atoms have labels), the lattice correspondence pattern is random and M can be taken to be ∞, so this
would be a pure “shuffling-dominated” transformation with a gigantic but unchanged supercell H. On the other hand, there
are many simple metals (like FCC Cu, Au, Al and BCC Mo, Fe) that deformation-twins at low temperature with M ¼ 1, where
the irreducible lattice correspondence pattern (before and after DT) involves merely one atom, evidenced by direct molecular
dynamics simulations, so there is no shuffling degree of freedom and it is then purely strain-dominated. The former case is
classified as civilian/diffusive transformation, the latter case is classified as military/displacive transformation (Christian,
2002), and they tend to manifest different sensitivity to temperature and strain rate (Suresh and Li, 2008; Li, 2007; Zhu
and Li, 2010). The civilian/diffusive transformation tends to be more temperature and strain-rate sensitive, but less stress
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sensitive (less nonlinear-thresholding behavior), than military/displacive transformation, due to smaller activation volume
(Li, 2007; Zhu and Li, 2010). The origin of this can in turn be traced back to the lack of long-range elastic interactions in the
coarse-grained model, that tends to reduce the activation volume. Activation processes with long-range elastic interactions
(Shen et al., 2008) tend to have much larger activation volume, reflecting more coordinated action across longer distances.
Based on the physical reasoning above, we can state that the “voxel” strain degrees of freedom, because of the long-range
elastic interaction, will always control the large-scale features of the transformation microstructure whenever εfinal s 0.
But regarding the thermal activation features such as temperature sensitivity, time dependence, etc., especially at the
nucleation stage when the relevant lengthscale and the number of voxels involved are relatively small, the shuffling degrees
of freedom could have important impact, by drawing analogy with anelasticity, diffusive creep and their relation to point
defect processes whose activation volumes are small. In other words, twinning dislocations and elasticity will always become
important for DT at large enough length-scale (when the twin grows large enough) (Serra et al., 2010; Ostapovets andMoln�ar,
2013), but the shuffling aspect could have impact on the timescale features of the transformation kinetics. The above is
actually rather general and applicable to all solid-to-solid transformations, not just twinning.

Continuum-level simulations of DT (Zecevic et al., 2015; Niezgoda et al., 2014; El Kadiri et al., 2013a; Kim et al., 2013;
Oppedal et al., 2012; Proust et al., 2009; Beyerlein and Tom�e, 2008) and, more generally, solidesolid transformations
(Auricchio et al., 2014; Yu et al., 2013; Lee et al., 2010), have been developed and successfully demonstrate macroscopic
deformation behavior. However, most of them used empirical rules to describe activation criteria of these deformationmodes.
Precise energetics information of G(l, s) based on ab-initio density functional theory (DFT) should be very useful for these
continuum-level simulations. Recently, atomic-level analyses by molecular dynamics are also reported (Wang et al., 2014,
2013a; Luque et al., 2014; Luque et al., 2013; Li et al., 2012; Wang et al., 2009a,b; Li and Ma, 2009a,b). However, atomic
energetics information along the DT minimum energy path (including shuffling component) in HCP Mg has not been re-
ported. Detailed analysis of shuffling depends on the crystallographic analyisis(Kihô, 1954; Bilby and Crocker, 1965; El Kadiri
et al., 2013b; Khater et al., 2013). Recently, Luque et al. proposed mathematical model which can deal with twin nucleation
and growth with solute atoms (Luque et al., 2014). Although twin boundary misfit energy is determined by DFT calculation in
their paper, the activation energy of twin nucleation is determined empirically because of the lack of ab initio energetics.
Motivated by this, we decide to study whether DT in hexagonal close-packed (HCP) magnesium is strain-controlled or
shuffling-controlled by ab initio DFT calculation. We note that even though the Bravais primitive cell of HCP metals contains
only N ¼ 2 atom, because of the lower symmetry of twinning system, M can be larger than 2, which should be an integer
multiple of N in general.
2. Mathematical definition of the strain-controlled vs. shuffling-controlled concept for solidesolid transformation

We give a precise and general mathematical definition of the strain-controlled vs. shuffling-controlled concept for solid-
esolid transformation as follows. Generally, the energy landscape ofM-atom supercell can be defined in 3M þ 6 dimensional
space, [s, ε]. s is the internal coordinates of labeled atoms (3M dimensions) and ε is the supercell strain tensor (6 dimensions)
with respect to a prescribed reference. We will use a scalar g to represent progress in ε. In the case of a simple-shear
dominated ε, g is chosen to be the dominant engineering shear strain component.

g≡2εyz (4)

where z is the K1 invariant plane normal, and y is the K2/K 0
2 shear displacement direction of DT (Christian and Mahajan,

1995). By definition, g ¼ 0 when l ¼ 0. We can then increase g a little and fix it as a constraint, and then relax the
remaining 3Mþ 5 degrees of freedom in ab initio supercell calculation by steepest descent method. And then one repeats the
process. If we can reach the same activation energy G(l*) as the full ε5 sminimum energy path search by trotting along g, we
will call this activation path strain-controlled, in the sense that the reaction coordinate can be pretty well represented by g.
On the other hand, let us also define a scalar to represent the shuffling degree of freedom. We will choose:

I≡
�
s� sini

�T
HT

0H0

�
sfin � sini

�.
M (5)

where sini is the internal coordinates of labeled atoms before twinning (l ¼ 0), and sfin is the internal coordinates of labeled
atoms after twinning (l ¼ 1), for a given s. Please note that the s differences in (5) are the changes in internal coordinate
without PBC wrap-around, same as how the atomic mean-square displacement (MSD) is computed in PBC. I has the unit of Å2

and takes the meaning of the mean-square non-affine displacements (MSD) when the solidesolid transformation finishes. By
definition, I ¼ 0 when l ¼ 0. One can do an alternative calculation where one increases I a little and fix it as a constraint
variable, and relax the remaining 3Mþ 5 degrees of freedom by steepest descent, and then repeat trotting along I. In this case,
all 6 strain tensor components become “slaved” variables of I: the supercell shape and size respond instantaneously to the
tweaking of this internal “cog”. If we can get to the same saddle point G(l*) as the full ε 5 s path search, we will call this
activation path shuffling-controlled, in the sense that the reaction coordinate can be pretty well represented by I. If neither g-
control or I-control can give us the right saddle energy, or if both can, we will call such transformation path as under mixed-
control.
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3. Non-basal f1012g〈1011〉 deformation twinning in HCP magnesium

HCP magnesium alloys are promising lightweight structural materials. Hampering broader applications, however, is the
limited formability of HCP Mg which originates from its plastic anisotropy. This is because the slip (or twinning) systems of
HCP Mg are not equivalent and the critical resolved shear stress (CRSS) can differ greatly. In HCP Mg single crystal, basal slip
has the lowest CRSS, 0.5e5 MPa (Akhtar and Teghtsoonian, 1969a; Chapuis and Driver, 2011) at room temperature. On the
other hand, the non-basal slip and twinning systems, which can produce deformation along the c-axis, have a much higher
CRSS (Chapuis and Driver, 2011). For example, 20e30 MPa of prismatic slip (Akhtar and Teghtsoonian, 1969b; Yoshinaga and
Horiuchï, 1963), 6e10 MPa of f1012g〈1011〉 twinning system have been reported (Kelley and Hosdord, 1968; Chapuis and
Driver, 2011). Although considerable research has been devoted to improving the formability and understanding the plas-
tic anisotropy both experimentally and theoretically, much uncertainties remain. Among these, non-basal f1012g〈1011〉DT is
presently receiving much attention, because DT frequently appears as a result of the high Schmid factor of ~0.5 when tensile
normal stress exists perpendicular to the basal plane (Luque et al., 2013). Many experimental studies and theoretical analyses
have been performed on the HCP f1012g〈1011〉 twinning system.

Nevertheless, information regarding the required mechanical conditions and atomistic twinning processes is still not fully
clarified. For example, recent nano-sample uniaxial extension (or compression) experiments show quite higher CRSS,
400 MPa (Yu et al., 2012) or 250 MPa (Liu et al., 2014), compared with previous bulk CRSS value, 6e10 MPa(Kelley and
Hosdord, 1968; Chapuis and Driver, 2011), due to size effect on plasticity like for other non-basal slip systems (Byer and
Ramesh, 2013; Lilleodden, 2010), that may be attributable to the increased importance of DT nucleation (vs DT growth) in
small samples (Zhu and Li, 2010). The non-Schmid effect is also reported for HCP Mg secondary f1012g〈1011〉 twin (Barnett
et al., 2008), Zr, Ti polycrystal compression experiment (Capolungo et al., 2009; Wang et al., 2010) and molecular dynamics
study (Barrett et al., 2012). Moreover, in Mg and Ti, recent TEM analysis show the existence of the incoherent f1012g〈1011〉
twin boundary, Basal-Prismatic (BP) or Prismatic-Basal (PB) boundaries, and faceting of twin boundary (Wang et al., 2013a; Tu
et al., 2013; Liu et al., 2014; Barrett and El Kadiri, 2014a,b; Sun et al., 2015; Tu et al., 2015). The reasons for these unique
properties are not clear and we think shuffling could be a factor for consideration. Non-schmid effect and the BP, PB interfaces
seems to be partially thermal activated rather than purely stress (or strain) driven. For example, Liu et al. observed BP, PB in
their nano-pillar compression test (Liu et al., 2014), where the loading direction is normal to c-direction and the resolved
shear stress along BP and PB are small. This may suggest the nucleation or growth of BP and PB boundaries is not purely
controlled by the direction of stress, and thermally activated shuffling could be important (although the magnitude of the
stress is also important).

Our study aims to provide a DFT-based Gibbs energy landscape of f1012g〈1011〉 DT. Fig. 1 shows perfect (l ¼ 0) and
twinned (l ¼ 1) HCP atomic structures viewed from 〈1210〉, at s ¼ 0. The four-atom parallelepiped supercell used in this
study, which includes atoms A, B, C, and D, is indicated as a broken red line. The four-atom supercell (M¼ 4) is the minimum
lattice correspondence pattern unit necessary to render the atomic arrangements during f1012g〈1011〉 twinning shear
deformation (Li and Ma, 2009a; Wang et al., 2013b). This deformation pattern in our definition is the same as the one pro-
posed based on crystallographic analysis (El Kadiri et al., 2013b; Khater et al., 2013; Bilby and Crocker, 1965). Our repeat unit
expresses 2-layer zonal DT. The twin thickness and twin dislocation correspond to h2 and b2 in Khater et al. (2013) and Bilby
and Crocker (1965) and the change of I corresponds to the net shuffles without any plastic deformation (El Kadiri et al., 2013b).

Here we should note again that our DFT model cannot evaluate the realistic twin nucleation and twin growth quantita-
tively. Realistic DT will be heterogenous, say initially twin embryo is nucleated (twin nucleation), then twin boundary will
migrate (twin growth). With DFT calculation, it is difficult to deal with the heterogeneity due to computational cost. In larger
scale atomistic calculations like MD, we can deal with such heterogenous deformation and its total energetics (Rasmussen
et al., 1997; Sheppard et al., 2012), but everything will be based on empirical interatomic potential usually. In this paper,
we try to reduce the problem to a manageable complexity with DFT, and then use kMC to do the coarse-graining which will
include the elastic field of the twinning dislocations in the future, that should be able to handle both twin nucleation and
growth (Shen et al., 2008).

4. Methods

We employed the Vienna ab-initio simulation package (VASP) (Kresse and Furthmüller, 1996) with a Perdew-Wang
generalized gradient approximation functional (Perdew et al., 1992) and projector-augmented wave potentials (Kresse and
Joubert, 1999) for Mg (3s23p0 valence). An energy cutoff of 265 eV was used for the plane wave expansion. A Monkhorst-
Pack k-point mesh (Monkhorst and Pack, 1976) of 13�13�13 was used, which reduces k-point sampling error to less
than 1.0meV/Å. The energy convergence criteria of the electronic and ionic structure relaxations were set to 10�9 and 10�3 eV,
respectively. For the electronic structure relaxation, the RMM-DIIS algorithm (Pulay, 1980) was used. The computed HCP
lattice parameters are a0/c0 ¼ 1.628, a0 ¼ 3.195 Å and the shear modulus G for the twinning shear mode is 19.5 GPa. These
values are in reasonable agreement with those obtained in other theoretical studies (a0/c0 ¼ 1.628 (Nie and Xie, 2007;
Sandl€obes et al., 2012) and a0 ¼ 3.13 Å (Nie and Xie, 2007)) and experimental measurements (a0/c0 ¼ 1.624 (Yoo, 1981),
a0 ¼ 3.209 Å (Yoo, 1981) and G ¼ 21.49 GPa (Ogata et al., 2004)). Subroutines of independent stress and strain component
control (Ogata et al., 2005) and atomic and supercell shape relaxation under constraints (drag method (Jonsson et al., 1998))
have been implemented into the VASP code. In our DFT results we have not considered the vibrational entropy contribution to



Fig. 1. Atomic arrangements and four-atom supercell shape of perfect HCP and twinned HCP configurations viewed from½1210�. The different colored atoms
represent atoms in each of the ð1210Þ atomic planes. The DFT four-atom supercell, which includes atoms A, B, C, and D, are indicated by a broken red line. The
M ¼ 4 supercell (see text for the details) and shearing direction and typical atomic shuffling motionwhen I defined in eqn. (5) is increased in the supercell are also
shown. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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G at finite temperature (although in principle we could by performing harmonic expansion), so our results can be considered
the enthalpic contribution or the T/0K limit of the Gibbs free energy landscape.

5. Results and discussion

We first evaluate the internal energy U of the supercell with respect to the uniform twinning shear deformation,

UðgÞ ¼ min
s;ε2g

Uðε; sÞ (6)

and these are shown in Fig. 2 (a) and (b). The shear deformation was applied to two different fully relaxed HCP supercells,
which have HCP and twinned HCP configurations. We termed these supercells “original” (red plots in Fig. 2 (a) and (b)) and
“twinned” (green plots in Fig. 2 (a) and (b)). Both of these supercells have the same perfect HCP lattice structure, but the
twinned supercell has the sheared supercell frame from the original supercell of g¼ gyz¼ 0.124 engineering shear strain.
We should note that internal atomic configurations in these supercells can be different even though they have the same
supercell shape. We actually found the internal atomic configuration s at a certain engineering shear strain to be dependent
upon whether it has been sheared from the “original” or the “twinned” supercell. It causes internal energy and stress
differences at each engineering strain g, shown as the red and green plots in Fig. 2 (a) and (b). In Fig. 2 (a), there exists an
energy crossover at a critical g ¼ gc(¼0.062) between these plots. Above the critical strain, an atomic configuration sheared
from a twinned supercell becomes energetically favorable compared to that of the original supercell with the same cell
shape, and thermodynamics would start to allow DT to happen at T ¼ 0 K. However, even at a little above the critical strain,
a transition from red to green curve in Fig. 2 (a) and (b) still seem to involve an energy barrier. In other words, spontaneous
twinning has not been observed in the DFT calculation, in the absence of thermal fluctuations and waiting times. This
already hints that the twinning shear strain g may not be the dominant reaction coordinate. There is something internal
that “got stuck” and pegs the red / green transition from happening spontaneously, even quite above the equi-energy
strain gc.

To examine the “internal cog” effect in detail, we define and numerically evaluate the Gibbs free energy landscape using ab
initio supercell energetics



Fig. 2. Supercell internal energy (a) and, Cauchy shear stress (b) with respect to engineering shear strain g. The shear deformation is applied to two different
initial supercell atomic configurations: “original” (red plots) and “twinned” (green plots). An energy crossover occurs at g ¼ gc(¼0.062). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Gðε; s;sÞ≡Uðε; sÞ �Wðε;sÞ; (7)

where W(ε, s) is the work done by constant external Cauchy stress s (Wang et al., 1995):
Wðε;sÞ≡
Z1

0

dldetjJðh ¼ lεÞH0jTr½J�1ðh ¼ lεÞsJ�Tðh ¼ lεÞε�; (8)

where h ¼ lε ¼ 1/2(JTJ�I) is the Lagrangian strain tensor, J is the corresponding deformation gradient tensor:
J ¼ RðIþ 2hÞ12 (9)

and R is an additional rotation matrix RTR¼ I that is completely defined when the transformation coordinate frame

convention is chosen. Even though G(ε, s, s) is now defined by (7), since ε5 s space is 3Mþ 6 dimensional, it is difficult to be
visualized directly. So we can use (4) and (5) to help the visualization. By applying energy minimization to all degrees of
freedom of the supercell system other than g and I, we can uniquely compute G(g, I, s):

Gðg; I;sÞ ≡ min
ε2g;s2I

Gðε; s;sÞ (10)
The computed Gibbs energy landscapes DG(g, I) at different external Cauchy shear stresses, syz¼ szy¼ 0 GPa, 1 GPa, and
2 GPa along the twinning direction, are shown in Fig. 3. The other Cauchy stress components were set to zero. The red curves
on the Gibbs energy landscapes represent the minimum energy paths (MEPs) from the original to the twinned configuration
under these external shear stresses, which were estimated by applying the nudged elastic band (NEB) method (Jonsson et al.,
1998) to obtain the two-dimensional Gibbs energy landscapes. The MEP analysis based on the Gibbs energy landscape clearly
indicates that a uniform supercell shape change and an atomic position change simultaneously happen during the DT process.
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Fig. 4 represents the atomic position change along the MEP at 0 GPa shear stress. A “dumbbell flipping” or “shuffling”, that is,
staggered rotations of the A-B and C-D atomic bonds, behavior can be seen together with a uniform supercell shear defor-
mation (see also supplemental movie (Suppl_movie.pptx)). The Gibbs energy change along the MEP under different external
shear stresses is shown in Fig. 5 (a) and (b) shows the change in the Gibbs energy barrier with respect to the external shear
stress.

We also independently performed the following two kinds of NEB calculations: (1) an NEB calculation with respect to the
internal atomic configuration I, in which the supercell frame is relaxed under the predefined external stress (I-control NEB).
(2) an NEB calculationwith respect to g, inwhich internal atomic configuration s is relaxed for each supercell frame shape (g-
control NEB). A comparison between two-dimensional Gibbs energy landscape, I-control NEB and g-control NEB Gibbs energy
barriers is presented in Fig. 5(b), and one can find that the Gibbs energy barrier determined by I-control NEB agrees well with
the Gibbs energy barrier based on the two-dimensional Gibbs energy landscape, whereas the Gibbs energy barrier obtained
by the g-control NEB is significantly higher. This indicates that the DT is an I-dominant (non-affine displacement dominant)
deformation at the smallest lengthscale of the irreducible lattice correspondence pattern. Thus, if an assist of thermal energy
were to exist (say by a rare event of 20 phonons colliding within one voxel), the twinned structure could be generatedwithout
generating local shear strain, as the phonons could toggle the “internal cog” of the voxel. Once the “internal cog” is flipped, the
voxel g will spontaneously relax toward the twinned configuration later.

Wang et al. also calculated the stress and potential energy versus uniaxial c-direction extension strain of theM ¼ 4 atoms
unit cell with DFT (Wang et al., 2013b). The critical stress and activation energy of uniform deformation can be estimated from
their plot. The difference with our work is that they did not treat strain and shuffling degrees of freedom equally, and their
model is similar to our g-control NEB. Actually, because of this, they overestimated the activation energy; their value is higher
than our activation energy at 0 GPa, 17meV/atom.

Another point we should mention is that the DT is not totally insensitive to stress even though it is I-dominant. Fig. 5 (b)
shows that the Gibbs energy barriers of all cases decreasewith increasing applied external shear stress, but the dependency of
I-control NEB and two-dimensional Gibbs energy landscape case is weaker than the g-control NEB case. Originally, shuffling is
regarded as strain free (Kihô, 1954). However, our calculations show that plastic deformation follows spontaneously and
strain is induced once shuffling occurs (Li, 2004). Thus we cannot divide strain and shuffling perfectly, as they are not
“orthogonal”. Even though the shuffling degree of freedom I is the controlling variable in our DFT MEP, the strain is slaved to
the shuffling, and therefore the shuffling energy landscape is also biased by the external stress. So stress influences the energy
landscape in all situations.

There exists a gray zone between pure “deformation twinning” (DT) and pure “annealing twinning” (AT), and our work
aims to quantify this grayness. For annealing twinning, diffusive thermally activated processes control the twinning. In AT, the
transformation strain (based on experimental metallography of tracking fiducial markers on sample) is zero, relative to which
the shuffling mean square displacement is obviously significant (Mao et al., 2015; Li et al., 2015). In contrast, in the textbook
example of diffusionless DT of FCC metals, the transformation strain is huge (like 70.7%), but shuffling MSD is assumed to be
zero (although there are complications like random activation of partials (RAP) twinning in FCC metals (Wu et al., 2008; Zhu
et al., 2012) also). In our case of Mg f1012g〈1011〉 DT, the transformation strain is relatively small, only 12.4%, and the
shuffling degrees of freedom does account for much of the actionwithin theM¼ 4 repeat unit. So our case falls squarely in the
gray zone.

Eventually an athermal condition is achieved at a critical external shear stress of ~3.0 GPa. Thus, applying 3.0 GPa external
shear stress can induce the DT regardless of the internal atomic configuration I. So DT becomes g-dominant (shear strain
induced) under such an extremely high shear stress. CRSS ¼ 3.0 GPa corresponds to ideal strength for DT, which can be
achieved only if without any pre-existing defects (not even surfaces), andwithout any thermal activation (T¼ 0 K) (Zhu and Li,
2010). This can be used as a reference value to normalize local stress and assess whether a voxel-level local stress is “high” or
“low”. Twin nucleation could be shuffle-controlled when the embryo is small and voxel-level local stress is “low”. Twin
dislocations and elasticity will become more important as the twin grows bigger because voxel-level local stress at twin tip
gets progressively higher due to load shedding from a larger region. For the quantitative analysis, again, we are building the
kMCmodel with long-range voxel-to-voxel elastic interactions (Zhao et al., 2013), to represent strain-carrying defects like the
twin dislocations (Shen et al., 2008).

Having said that, for twin nucleation at room temperature, it should be very unlikely to find as high shear stress as
CRSS ¼ 3.0 GPa due to the existence of thermal energy. We believe that in a practical load-ramp experiment at room
temperature, where a typical applied strain rate is 10�3 /s, there is enough time and thermal fluctuations that the system
would undergo DT with shuffling-controlled thermal activation path, as the voxel passes the low- and intermediate stress
regime before it ever reaches the extremely high-stress regime. In other words, we believe that local atomic shuffling does
dominate Mg's f1012g〈1011〉 twinning at room temperature and normal strain rates, from ab initio energetics perspective
(Li and Ma, 2009a; Wang et al., 2013b; Li and Zhang, 2014). Based on our preliminaly kMC calculations at T ¼ 300 K, local
twin nucleation stress could be as high as 400 MPa, in reasonable agreement with recent nano-pillar extension test (Yu
et al., 2012).

We also examined changes in the other strain components during the twinning shear process along theMEP (Fig. 6). Finite
negative normal engineering strains (contractions) up to �1.0% in εyy and εzz and positive (extensions) up to 2.4% in εxx were
observed at the saddle point. This suggests that tensile stress sxx, and compressive stresses syy and szz may help the DT (Ogata
et al., 2002).



Fig. 3. Gibbs energy distribution DG(g, I) at different levels of external shear stress syz ¼ szy¼ 0 GPa (a), 1 GPa (b), 2 GPa (c). The red curves represent the MEPs of
the deformation twinning processes. The raw data are available as supplemental information “Internal_ene_dist_U_data.txt” and “External_work_W data.txt”.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Atomic configuration change along the MEP at syz¼ szy¼ 0 GPa. A staggered rotation of the A-B and C-D atomic bonds can be observed. See also
supplemental movie Suppl_movie.pptx.
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Barrett et al. (2012) observed lower CRSS of ð1102Þ twinning system with ½1012� uniaxial extension than that of the
equivalent ð1012Þ twinning systemwith [0001] uniaxial extension. With ½1012� uniaxial extension, not only the shear strain,
but the positive εxx also provided to ð1102Þ twinning system, which helps the DT according to our result. On the other hand,
[0001] uniaxial extension gives negative εxx to ð1012Þ twinning system, which suppresses the DT according to our ab initio
energetics. So our ab initio energetics alongMEP is consistent with the observed non-Schmid effect of Barrett et al. (2012). It is
Fig. 5. Gibbs energy variation along the MEP (a) and the energy barrier change with respect to external shear stress (b). In (a), the solid curves and dots represent
results obtained from the Gibbs energy landscape and direct NEB analysis, respectively. In (b), the square, triangular, and circular dots represent the Gibbs energy
barriers obtained from the two-dimensional Gibbs energy landscape (2D land), I-control NEB, and gecontrol NEB, respectively. The lines are intended to guide the
eye.



Fig. 6. The change in engineering strain components, εxx, εyy, εzz, along the MEP at syz ¼ szy¼ 0 GPa. Note that always gxy¼ gzx¼ 0.
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worth noting that once DT grows large enough, the shear stress along the transformation strain direction will play the
dominant part of the driving force of the twin growth as we mentioned in the previous section. Thus, Schmid's law should
work better in that limit.

6. Conclusion

In summary, we have given a proper mathematical definition to the voxel-level reaction progress variable of local solid-
state transformation, to be “affine” (strain-controlled) or “non-affine” (shuffling-controlled). Applying our analysis to Mg
f1012g〈1011〉 DT, the Gibbs energy landscape of Mg f1012g〈1011〉 twinning shear was derived based on first-principles
density functional theory. Using the Gibbs energy landscape, we figured out the MEPs of the twinning shear processes
under various external local shear stress conditions, and the Gibbs energy, shear strain, and atomic configuration changes
along the MEPs were computed. Knowing the data along the MEPs allows us to know the athermal shear stress of 3.0 GPa for
the uniform twinning shear deformation; moreover, a “dumbbell flipping” or “shuffling” atomic motion together with uni-
form shear strain was found to be a deformation pathway of the twinning shear.

We conclude that Mg f1012g〈1011〉 DT is likely dominated by local atomic shuffling at room temperature and normal
strain rates at the nucleation stage. The stress dependency is relatively small (but still exists). Thus, it should have a relatively
small activation volume, and more sensitive dependencies on temperature and applied strain rates, than the typical DT
processes in FCC and BCC metals that are strain-controlled and have stronger elastic interactions due to the much larger
transformation strains.

Finally we note that the present work is still incomplete, in the sense that the ab initio energetics needs to be brought to
larger lengthscales, which we plan to do with the kMCmodel in a follow-up work. “Shuffle-controlled” vs. “strain-controlled”
mentioned in the paper are at the level of the smallest possible lengthscale, that of the M ¼ 4 repeat cell. This should not
directly translate to “shuffle-controlled” vs. “strain-controlled” at the larger mesoscale level where strain-induced elastic
interactions could become more prominent and important, although with a “grayness” from small to larger lengthscales.
From our result, there is always stress sensitivity, as stress influence both our affine and deterministically non-affine dis-
placements. At mesoscale, “shuffle-controlled” is likely to be true at smaller lengthscales such as twin nucleation. But as the
deformation twin grows big, long-range elastic interactions and strain-carrying defect will bias more toward “strain-
controlled” twin propagation, manifesting as larger activation volume, lower temperature and strain-rate sensitivities in the
propagation stress.
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