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Perovskite ferroelectric materials exhibit the novel ferroelectric photovoltaic effect, where photon-ex-
cited electron–hole pairs can be separated by ferroelectric polarization. Especially, semiconducting fer-
roelectric materials with small band gaps ( )Eg have been extensively studied for applications in solar
energy conversion. Traditional route for creating semiconducting ferroelectrics requires cation doping,
where Eg of the insulating perovskite ferroelectric oxides are reduced via substitution of certain cations.
But cation doping tends to reduce the carrier mobility due to the scattering, and usually lead to poor
photovoltaic efficiency. In the present work, based on first-principles calculations, we propose and de-
monstrate a new strategy for designing stoichiometric semiconducting perovskite ferroelectric materials.
Specifically, we choose the parent non-polar semiconducting perovskite sulfides ABS3 with Pnma sym-
metry, and turn them into ferroelectric Ruddlesden–Popper A B3 2 S7 perovskites with spontaneous po-
larizations. Our predicted Ruddlesden–Popper Ca3Zr2S7 and other derived compounds exhibit the room-
temperature stable ferroelectricity, small band gaps ( < )E 2.2 eVg suitable for the absorption of visible
light, and large visible-light absorption exceeding that of Si.
& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Due to the unique ferroelectric–photovoltaic (FE-PV) effect,
ferroelectric materials have been extensively investigated for
photovoltaic applications. Unlike the traditional semiconconductor
PV devices, which rely on p–n junctions to generate photocurrent,
ferroelectric materials have spontaneous polarization, built-in
depolarization field, and unconventional mechanisms for the se-
paration of photo-excited electron–hole pairs [1,2]. As a result,
heterogeneous p–n junctions are not required in FE–PV devices.
Various ferroelectric materials, including LiNbO3 single crystal [3]
and BiFeO3 thin films [4–9] can produce PV responses along their
polarization directions. Moreover, ferroelectric materials exhibit
the electric switchable PV responses [6,10] and their output pho-
tovoltages can greatly exceed Eg of the system [11]. These unique
properties allow FE-PV devices to potentially have energy con-
version efficiency beyond the Shockley–Queisser limit [12].
Ltd. This is an open access article u

als Science and Engineering,
A 02139, United States.
. Gou), liju@mit.edu (J. Li).
However, most ferroelectric materials known to date are per-
ovskite oxides with large Eg above 3.3 eV. The poor absorption of
the visible-light spectrum limits these ferroelectric materials for
PV applications. Thus some research efforts have focused on de-
veloping effective approaches to reduce Eg of ferroelectric oxides
for absorption of more visible light. Cation doping method has
been widely adopted for this purpose [13–15]. After substitution of
perovskite B-site cations by other transition metals, many semi-
conducting ferroelectric oxides have been created [10,16–19]. For
example, a small Eg of 1.39 eV has been reported in ferroelectric
[KNbO3]1�x[BaNi1/2Nb1/2O3�δ]x solid solutions [10]. Double per-
ovskite Bi2FeCrO6 has a tunable Eg between 1.4 and 2.7 eV [19].
While cation substitution method can indeed reduce Eg of ferro-
electric oxides, it will also produce structural disorder, non-stoi-
chiometric defects or oxygen vacancies into the systems. As a re-
sult, cation-doped ferroelectric oxides usually have low carrier
mobility and poor transport properties. In fact, except for very few
cases [19], most cation-doped semiconducting ferroelectric oxide
solid-solutions still have low output photocurrent densities on the
order of μA/cm2 and energy conversion efficiency less than 1% [1].

In our work, instead of using cation doped solid solutions, we
will design and predict a new family of stoichiometric perovskite
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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compounds as semiconducting FE–PV materials. Wide band gaps
of ferroelectric oxides result from the large electronegativity dif-
ference between metals and oxygen [10]. Compared with oxides,
other perovskite systems, such as perovskite sulfides containing
the less electronegative sulfur atoms should have smaller Eg. In
fact, semiconducting perovskite sulfides have been experimentally
synthesized and theoretically predicted [20–23], but none of them
are reported to be ferroelectric. Thanks to a new mechanism of
hybrid improper ferroelectrics (HIF) recently discovered [24–26],
there are opportunities to create ferroelectric perovskite sulfides.
Typically, in a paraelectric ABX3 perovskites with orthorhombic
Pnma symmetry, there exist a�a�c0 and a0a0cþ octahedra rotation
modes. These two coupled modes can induce non-zero ferro-
electric polarization, known as HIF, in layered Ruddlesden–Popper
A B X3 2 7 perovskites. Such rotation-driven ferroelectricity have been
theoretically predicted [25,27] and then experimentally realized in
various Ruddlesden–Popper perovskites [28–31]. As Pnma per-
ovskite sulfides ABS3 already exist in nature [32], once crystalized
in Ruddlesden–Popper A B S3 2 7 phase, they can be novel ferro-
electrics with diverse functionalities. Without introducing doped
cations or non-stoichiometric defects, these stoichiometric single-
phase Ruddlesden–Popper ferroelectric sulfides can be promising
FE–PV materials, as they potentially have good carrier transport
properties as stoichiometric compounds, and large absorption of
visible light due to direct band gap [23]. Moreover, the design
strategy we proposed should be transferable to other non-polar
orthorhombic perovskites, such Pnma halide perovskite CsSnI3
[33,34].

Our paper is organized as follows: we start with experimental
Pnma perovskite sulfides ABS3 and investigate their octahedral
rotation patterns. We then extend to Ruddlesden–Popper A B3 2 S7

sulfides and examine how ferroelectricity is induced by coupled
octahedral rotation modes. Electronic structures and optical ab-
sorption properties of Ruddlesden–Popper A B S3 2 7 will also be
computed. Based on our simulations, ferroelectric sulfides with
optimized Eg and electric polarizations can be obtained. Finally, we
will discuss the possible experimental synthesis of ferroelectric
sulfides.
2. Computational methods

Our first-principles calculations are performed within density-
functional theory as implemented in the QUANTUM ESPRESSO
code (QE) [35] and the Vienna ab initio Simulation Package (VASP)
[36,37]. For calculations within QE code, we use the nonlocal op-
timized norm-conserving pseudopotentials [38,39] and a 60 Ry
plane-wave energy cutoff. PBEsol exchange-correlation functional
[40] is used for the calculations, as it can provide improved
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Fig. 1. Atomic structures for Pnma corner-sharing ABS3 (A¼Ca, Sr and Ba, B¼Zr and H
distortion (AFD) pattern (A-site cation displacement along pseudo-cubic [110] direction a
(player), total polarization = ∑ =P p 0layer . (c) Amplitudes of the major crystallographic
structural results for pervoskite systems [41,42]. × ×8 8 6 and
× ×8 8 4 Monkhorst–Pack k-grids [43] are used to simulate Pnma

ABS3 and Ruddlesden–Popper A B3 2 S7 perovskite sulfides respec-
tively. Stable ABS3 and A B3 2S7 phases are obtained by performing
structural relaxations on soft-mode generated structures until the
Hellmann–Feynman forces for each atom is less than 0.1 meV/Å
and the stresses less than 0.1 kbar. Soft-mode frequencies and ei-
gen-vectors are calculated based on density functional perturba-
tion theory (DFPT) [44,45]. The electronic contribution to the po-
larization is calculated following the Berry phase formalism [46].

Using the QE predicted sulfide structures, we further use Heyd–
Scuseria–Ernzerhof (HSE) hybrid density functional with screened
exact exchange interaction [47,48] implemented in VASP for the
electronic structure and optical absorption properties calculations.
An energy cutoff of 500 eV and a plane-wave basis set within the
projector augmented wave (PAW) [49] method are used for VASP
calculations. Spin-orbit coupling (SOC) is excluded in HSE calcu-
lations, as the band gap changes due to SOC effect in perovskite
sulfides are negligible [23]. It is noted that quasi-particle GW
method [50,51] can predict the band gap of a system with better
accuracy, but the computational cost for well-converged GW cal-
culations of Ruddlesden–Popper A B3 2S7 (48 atoms in one unit cell)
is unaffordable [23,52]. As a result, HSE hybrid functional calcu-
lation becomes an efficient yet accurate approach for electronic
structure calculations of perovskite sulfides.
3. Results and discussion

3.1. Structural and ferroelectric properties

Parent ABS3 perovskite sulfides. Experimentally synthesized ABS3
perovskite sulfides crystalize in various perovskite phases, which
exhibit the corner-, edge- or face-sharing BS6 octahedra networks
[21,32,53,54]. Based on the experimental work of Lelieveld and
IJdo [32], we will study the experimental corner-sharing per-
ovskite ABS3 with A¼Ca, Sr and Ba, B¼Zr and Hf. These ABS3
sulfides belong to the orthorhombically distorted perovskite fa-
mily with the Pnma symmetry (No. 62). Our calculated crystal
symmetry and lattice parameters agree well with experimental
results (Table SI of the supporting information).

As shown in Fig. 1, Pnma ABS3 exhibits a�a�c0 and a0a0cþ BS6

octahedra rotations in Glazer notation [55]. Due to the three-di-
mensional connectivity of the corner-sharing perovskite structure
[27,56], octahedra rotations in Pnma ABS3 will also induce the anti-
ferroic distortion (AFD) mode, where A-site cations from two
neighboring cation layers are displaced by the same magnitude
but along the opposite direction (Fig. 1(b)). As a result, Pnma ABS3
sulfides have zero net polarization.
f). Both top view (a) and side view (b) are shown to emphasize the anti-ferroic
re indicated by arrows). Due to the cancellation of the polarization from each layer
modes in Pnma ABS3 sorted by the tolerance factor.
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Similar to perovskite oxides, the magnitudes of structural dis-
tortion or rotation of octahedra in ABS3 sulfides can be char-
acterized by the well-established tolerance factor τ, defined as:

τ ≡ +
( + ) ( )

R R
R R2 1
A

B

S

S

where ( + )R RA S and ( + )R RB S correspond to A–S and B–S bond
lengths (detailed results in Table SII). For Pnma ABS3 with the
pronounced octahedra rotations, their tolerance factors τ < 1. An
obvious structural trend is found when we plot the magnitude of
crystallographic modes of ABS3 as a function of the tolerance factor
in Fig. 1(c): ABS3 with smaller tolerance factor (e.g. CaZrS3) has the
stronger octahedra rotation magnitudes (larger rotation angles,
Fig. S1), and also exhibits the larger anti-ferroic distortion ampli-
tudes. Therefore a question arises: can these octahedral rotations
with large amplitudes lead to the enhanced polarization in Rud-
dlesden–Popper perovskite sulfides?

Ruddlesden–Popper A B3 2 S7 sulfides. With the existence of
a�a�c0 and a0a0cþ octahedra rotations in Pnma ABS3, it is likely to
achieve the rotation induced ferroelectricity (HIF) in layered
Ruddlesden–Popper perovskites [25,27]. Considering that Rud-
dlesden–Popper Ba3Zr2S7 has already been synthesized experi-
mentally [57,58], we will extend our investigation to Ruddlesden–
Popper A B3 2 S7 sulfides derived from the parent Pnma ABS3, and
study their rotation induced ferroelectricity.

Ruddlesden–Popper sulfides have the general chemical formula
AS[ABS3]n, where the ABS3 perovskite blocks (P-blocks) are stacked
along [001] direction, inserted by an extra AS layer for every n
perovskite units, and inter-layer A cations are coordinated with the
terminal S atoms to form rock-salt blocks (R-blocks) [59]. Shown in
Fig. 2 are n¼2 Ruddlesden–Popper A B3 2 S7 sulfide structures. We
choose the distortion-free I mmm4/ (No. 139) phases as the para-
electric reference for A B3 2 S7, from which the soft phonon modes
and corresponding structural instabilities can be identified. Two
primary soft modes corresponding to a�a�c0 and a0a0cþ octahe-
dra rotations are found in I mmm4/ phase. After performing
structural relaxation on these two soft modes generated struc-
tures, ground state Ruddlesden–Popper A B3 2 S7 phases can be
obtained.

All of the Ruddlesden–Popper A B3 2S7 sulfides are optimized to
have orthorhombic polar A am21 (No. 36) symmetry. As shown in
Fig. 2, A B3 2S7 sulfides inherit a�a�cþ octahedra rotations from the
parent Pnma ABS3. Besides, they also exhibit the spontaneous
polarizations along pseudocubic [110] direction. The origin of ro-
tation induced ferroelectricity in A B3 2S7 can be revealed in cation-
layer resolved polarization ( )player plots (Fig. 2(a) and (b)).
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Fig. 2. Crystal structure for Ruddlesden–Popper A B3 2S7 with the orthorhombic A am21 s
rocksalt (R) blocks in A B3 2S7 are presented. Cation displacement is shown as arrows. play
the Born effective charge. ∑ player gives a non-zero total polarization. (c) Amplitudes of a
sorted by the tolerance factor of the parent ABS3 compounds.
Octahedra rotations in orthorhombic A B3 2S7 also induce AFD-type
cation displacement, where A-site cations from the neighboring
layers are displaced oppositely. But as octahedra connectivity
along [001] direction between different P-blocks are disrupted, in
each P-block, two of the three cation-layer dipoles are directed
along pseudo-cubic [ ]110 direction, while the third is anti-parallel
to the others. Therefore, a net polarization arises in Ruddlesden–
Popper A B3 2S7. The polarizations in A B3 2S7 are mainly contributed
by the A-site cation displacement, while the latter depends on the
magnitude of the octahedra rotations. It is therefore apparent that
Ca3Zr2S7 and Ca3Hf2S7 with small τ and significant octahedra ro-
tations exhibit large magnitude of polar displacement (Fig. 2(c)).

To quantify the octahedra rotation induced ferroelectricity in
Ruddlesden–Popper A B3 2 S7, we further calculate their sponta-
neous polarizations (P) using the Berry phase method (Fig. 3(a)).
By recording the variation of spontaneous polarizations and the
total energy of A B3 2S7 with respect to the change of amplitudes for
structural distortion connecting the paraelectric and ferroelectric
phases, the typical double-well P–E profiles are obtained (Fig. 3
(b)). Two potential wells correspond to two ferroelectric A B3 2 S7

phases of different polarization directions, while the paraelectric
state is located at the saddle point. When the potential well gets
deep enough, A B3 2 S7 can be stabilized in a stable ferroelectric
phase. Therefore, the energetic stability of ferroelectric A B3 2S7 can
be evaluated via ferroelectric stabilization energy ΔEP , which
measures the energy difference between the paraelectric and
ferroelectric states. As shown in Fig. 3(a), our calculated P and ΔEP

for A B3 2S7 decrease continuously as the tolerance factor increases.
The extremely small P and ΔEP in Ba3Zr2S7 indicate that it has a
very low Curie temperature (TC) and its ferroelectricity cannot be
stable at room temperature, which naturally explains why ex-
perimental synthesized Ba3Zr2S7 crystalizes in a paraelectric
I mmm4/ structure [58]. On the other hand, Ca3Zr2S7 has a large
ΔEP of 2.5 eV/f.u. vs. Δ ≅E 0.5 eV/f. uP . for Ruddlesden–Popper
Ca3Ti2O7, whose measured TC reaches 1100 K [60]. As a result,
Ca3Zr2S7 should have a stable and experimentally measurable
polarization (P¼18.1 μC/cm2) at room temperature, which can be
an ideal ferroelectric sulfide for experimental study at room
temperature and above.

3.2. Electronic structures and optical absorption properties

Non-polar Pnma ABS3 perovskite sulfides can be ferroelectric if
they are synthesized in Ruddlesden–Popper A B3 2S7 structures. To
explore the application of ferroelectric A B3 2 S7 as the ferroelectric
photovoltaic materials suitable for visible light absorption, their
ymmetry. Top view of perovskite (P) block (a) and side view of both perovskite and
Ω= · ∑− ⁎u Zi i ier

1 , where Ω is the cell volume, ui is the cation displacement and ⁎Zi is
þaþc0 polar displacement, a�a�c0 and a0a0cþ octahedral rotation modes in A B3 2S7
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electronic structures, especially band gaps (Eg) should be precisely
determined. Due to the deficiencies of LDA or GGA method in
predicting the energy band gaps, a more accurate HSE hybrid
functional [47,48] is used for calculations. HSE calculation provides
an accurate prediction of band gaps for perovskite sulfides. For
example, HSE predicted band gap for BaZrS3 is only 0.1 eV lower
than experimental value [21] (Table SIII).

A B3 2 S7 sulfides are predicted to have direct band gaps within
the energy range between 1.8 and 2.4 eV, comparable with med-
ium-bandgap semiconductors such as CdSe and GaP. Besides,
Pnma ABS3 sulfides are also predicted to be semiconductors with
small Eg (Fig. S2 and Table SIII). The following band gap trends are
identified in A B3 2S7 (Fig. 4): [ ] < [ ]E A E AZr S Hf Sg g3 2 7 3 2 7 , and for each
individual A3Zr2S7 and A3Hf2S7, its Eg decreases monotonically with
the tolerance factor. The band gap trend in A B3 2 S7 can be under-
stood from the nature of their electronic structures. Similar to
ferroelectric oxides [61], there are pronounced hybridization of
electronic states between B-site cations and anions in A B3 2 S7.
Typically in Ca3Zr2S7, Zr-4d and S-3p states are hybridized/over-
lapped over the energy range around the Fermi level. The con-
duction band of the system is mainly contributed by the empty Zr-
4d states, while the occupied S-3p states are distributed
throughout the entire valence band. Band gap of Ca3Zr2S7 refers to
the energy difference of band edges between occupied S-3p and
empty Zr-4d states.

The electronic structures of A B3 2 S7 are mainly determined by
the hybridization/orbital overlap between Zr-4d (Hf-5d) and S-3p
states. As shown in Fig. 4, Zr–S orbital overlap will be maximized
when Zr–S–Zr bond angle reaches 180°, giving arise to the largest
orbital bandwidths. But due to the octahedral rotations, bent Zr–
S–Zr bonds in A B3 2 S7 will reduce the magnitude of Zr–S orbital
overlap and electronic bandwidths derived from them [62,63].
Therefore, band gap changes in A B3 2 S7 are mediated by the octa-
hedral rotations [64]: compared with Sr3Zr2S7, Ca3Zr2S7 exhibits
larger magnitude of octahedra rotation and smaller orbital band
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widths (especially conduction S-3p), which finally leads to a larger
band gap. Moreover, Hf-5d orbital has a higher energy level than
Zr-4d. After hybridization, Hf-5d conduction band will be located
at higher energy [65], making [ ] > [ ]E A E AHf S Zr Sg g3 2 7 3 2 7 .

Based on the obtained electronic structures, we further calcu-
late the frequency-dependent dielectric function (ϵ(ω)) and op-
tical absorption coefficient (α(ω)) of A B3 2 S7. As Ca3Zr2S7 exhibits
the most stable ferroelectricity and largest spontaneous polariza-
tion, we will choose Ca3Zr2S7 as a prototype of ferroelectric sul-
fides for detailed study. ϵ and α are calculated using the in-
dependent particle approximation implemented in VASP [66],
where many-body effects (e.g. photon-excited excitons) are ne-
glected. Test calculation performed on bulk Si indicates experi-
mental absorption coefficient of Si [67] can be reproduced using
the independent particle approximation (Fig. S3).

As shown in Fig. 5, Ca3Zr2S7 has a direct band gap of 2.18 eV.
Compared with CaZrS3 (band structure shown in Fig. S2) with
three-dimensional (3D) corner-sharing octahedra connectivity, 2D
layered Ca3Zr2S7 only exhibits the largely dispersed energy bands
along the in-plane polarization directions (Γ–X and Γ–Y), while
the out-of-plane bands along Γ–Z are almost dispersionless.

Our calculated imaginary dielectric function ϵ2 and absorption
coefficient α, that determine the optical absorption properties of
Ca3Zr2S7 are also given in Fig. 5. Experimental absorption coeffi-
cient of Si is also included for comparison. The onset of the optical
absorption in Ca3Zr2S7 occurs at an energy point exactly same as
its fundamental band gap (marked as arrows in Fig. 5), indicating
that there is a direct optical transition from valence band max-
imum to conduction band minimum in Ca3Zr2S7. More im-
portantly, within the visible light energy range (photon energy
<3.4 eV), Ca3Zr2S7 exhibits optical absorption coefficient much
larger than that of the single crystal Si (Fig. 5).

3.3. Photovoltaic properties

Ruddlesden–Popper Ca3Zr2S7 can effectively absorb visible light
with wavelength below 568.7 nm. As the solar spectrum is
dominated by visible light, high absorption of visible light is es-
sential for achieving high PV efficiency [69]. To evaluate the pho-
tovoltaic performance of Ca3Zr2S7 as an ideal solar cell, its PV
conversion efficiency needs to be simulated.

PV efficiency of an ideal thin film solar cell can be simulated
using the spectroscopic limited maximum efficiency (SLME)
method [70]. Such a method takes into account the optical ab-
sorption spectrum, energy dependent carrier recombination loss
and the thickness of the absorber layer (see supporting informa-
tion for details). SLME method has been widely and successfully
applied for many solar-cell materials, including the perovskites
photovoltaic materials [69,71]. Fig. 6 shows our calculated short-
circuit current density Jsc, open-circuit voltage Voc and maximum
photovoltaic efficiency η for Ca3Zr2S7, as a function of absorber
thickness L. As photo absorptivity increases with the thickness L,
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Table 1
Calculated averaged perovskite tolerance factor τavg, ground state total polarization
P, ferroelectric stabilization energy ΔEP and band gap Eg for A-site cation ordered
Ruddlesden–Popper A′S[CaZrS3]2.

Sulfides τavg P (μC/cm2) ΔEP (eV/f.u.) Eg (eV)

CaS[CaZrS3]2 0.878 18.1 2.5 2.18
SrS[CaZrS3]2 0.888 20.5 1.8 2.11
BaS[CaZrS3]2 0.903 23.6 1.2 1.98
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PV efficiency reaches the maximal value (∼ 24%) at large L. At a
typical absorber thickness of L¼0.5 μm, the calculated Jsc is at the
order of mA/cm2 and efficiency η is about 23%. Such a value is
comparable with the calculated PV efficiency for other photo-
voltaic materials, such as GaAs and CH3NH3PbI3 (η ≃ 15% and 23%,
when L¼0.5 μm [69]). The overall good PV performance of
Ca3Zr2S7 originates from its direct semiconducting band gap and
high absorption of visible light [70]. It is worth noting that the
experimentally measured efficiency of a solar cell can be affected
by many extrinsic effects, such as thin-film preparation, defects,
etc. Still our calculated ideal PV properties for Ca3Zr2S7 can be a
useful guideline for future experimental investigations.

3.4. Extension to cation-ordered Ruddlesden–Popper sulfides

We have shown that Ruddlesden–Popper Ca3Zr2S7 with the
smallest tolerance factor exhibits the largest polarization and band
gap (Figs. 3 and 4) among all A3Zr2S7 sulfides we studied. From the
experimental point of view, tuning the band gaps of the semi-
conducting ferroelectric materials will be crucial for optimizing
their performance characteristics as solar cells [19]. In this sub-
section, we will demonstrate the tunability of band gap and fer-
roelectricity in Ruddlesden–Popper Ca3Zr2S7 via A-site cation
ordering.

Fig. 7 shows the crystal structure for A-site ordered Rud-
dlesden–Popper A′S[CaZrS3]2 derived from Ca3Zr2S7, where Ca
cations in the middle of perovskite blocks are substituted by other
A′ cations with larger radius (A′¼Sr and Ba). Compared with pure
Ca3Zr2S7, electric dipoles from A′S cation layers are smaller, which
cannot cancel out with the CaS dipoles [27]. As spontaneous po-
larization in Ruddlesden–Popper sulfides are mainly contributed
by A-site cations, A-site ordered (Sr,Ca2)Zr2S7 and (Ba,Ca2)Zr2S7
exhibit enhanced electric polarizations over Ca3Zr2S7 (Table 1).
Moreover, the ferroelectric stabilization energies ΔEP in
(Sr,Ca2)Zr2S7 and (Ba,Ca2)Zr2S7 are still large enough to guarantee
their ferroelectricity are stable at room temperature. Substitution
of Ca by Sr or Ba will also lead to an increase of the average tol-
erance factor of the system. Based on the τ–Eg relation we
established, A′S[CaZrS3]2 have larger τavg than Ca3Zr2S7 (Table 1),
and their band gaps can be further reduced. For example,
(Ba,Ca2)Zr2S7 has a direct band gap below 2 eV, which can absorb
visible light with wavelength below 626.2 nm. Therefore, A-site
ordered A′S[CaZrS3]2 have enhanced polarizations and reduced
band gaps than pure Ca3Zr2S7.

We conclude by providing some guidelines for experimental
synthesis of ferroelectric Ruddlesden–Popper sulfides A B3 2 S7 and
fabrication of sulfides-based FE-PV devices. Sulfide Ba3Zr2S7 in
Ruddlesden–Popper structure has been synthesized using solid-
state reaction [57] or flux method [58] decades ago. Structural
characterization indicates that Ba3Zr2S7 has a paraelectric phase
with zero polarization. Therefore, ferroelectric properties of per-
ovskite sulfides have never been experimentally explored. Based
on our prediction, Ca3Zr2S7 has very stable ferroelectricity at room
temperature, semiconducting band gap and large optical absorp-
tion coefficient. Ferroelectric Ca3Zr2S7 could potentially be made
using the similar experimental methods for synthesis of Ba3Zr2S7,
as both Ca3Zr2S7 and Ba3Zr2S7 are predicted to have the same
ground state structure. Moreover, band gaps and ferroelectricity of
Ca3Zr2S7 can be further tuned via A-site cation ordering. Using the
modern layer-by-layer thin film deposition techniques [18,24,72],
it is possible to prepare A-site ordered Ruddlesden–Popper
A′S[CaZrS3]2. Consequently, multilayered ferroelectric thin-film PV
device consisting of Ca3Zr2S7, (Sr,Ca2)Zr2S7 and (Ba,Ca2)Zr2S7 single
layers can absorb wide range of visible light, and an optimized PV
conversion efficiency may be achieved [19].
4. Conclusion

In conclusion, using first-principles calculations, we design a
new family of semiconducting perovskite ferroelectrics – Rud-
dlesden–Popper perovskite sulfides A B3 2 S7, for ferroelectric pho-
tovoltaic applications. Especially, Ruddlesden–Popper Ca3Zr2S7 is
predicted to have the stable ferroelectric polarization which can
efficiently separate the photo-generated electron–hole pairs, and
low band gap suitable for visible light absorption. Our calculations
further demonstrate Ca3Zr2S7 as a promising ferroelectric photo-
voltaic material with the high photovoltaic energy conversion ef-
ficiency. Most importantly, Ruddlesden–Popper perovskite sulfides
presented in current work can be created by the standard synth-
esis techniques. We hope our work will motivate the experimental
synthesis of ferroelectric perovskite sulfides and exploration of
their ferroelectric and photovoltaic properties.
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