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Effect of nonlinear and noncollinear transformation strain
pathways in phase-field modeling of nucleation and growth
during martensite transformation
Pengyang Zhao1, Chen Shen2, Ju Li 3 and Yunzhi Wang1

The phase-field microelasticity theory has exhibited great capacities in studying elasticity and its effects on microstructure evolution
due to various structural and chemical non-uniformities (impurities and defects) in solids. However, the usually adopted linear and/
or collinear coupling between eigen transformation strain tensors and order parameters in phase-field microelasticity have
excluded many nonlinear transformation pathways that have been revealed in many atomistic calculations. Here we extend phase-
field microelasticity by adopting general nonlinear and noncollinear eigen transformation strain paths, which allows for the
incorporation of complex transformation pathways and provides a multiscale modeling scheme linking atomistic mechanisms with
overall kinetics to better describe solid-state phase transformations. Our case study on a generic cubic to tetragonal martensitic
transformation shows that nonlinear transformation pathways can significantly alter the nucleation and growth rates, as well as the
configuration and activation energy of the critical nuclei. It is also found that for a pure-shear martensitic transformation,
depending on the actual transformation pathway, the nuclei and austenite/martensite interfaces can have nonzero far-field
hydrostatic stress and may thus interact with other crystalline defects such as point defects and/or background tension/
compression field in a more profound way than what is expected from a linear transformation pathway. Further significance is
discussed on the implication of vacancy clustering at austenite/martensite interfaces and segregation at coherent precipitate/
matrix interfaces.
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INTRODUCTION
Many deformation and phase transformation processes in solids
exhibit nonlinear pathways in the 6-dimensional strain space. For
instance, while dislocation glide is generally considered as a pure
shear process without volume change, there is indeed a significant
transient dilatation associated with the activated state of
dislocation motion, confirmed in both atomistic calculations1

and experiments.2, 3 The α→ω martensitic transformation (MT) in
titanium also follows a complex nonlinear pathway,4, 5 which is
revealed in the martensite transformations in lithium6 and iron7 as
well. Figure 1 presents the results from atomistics-based nudged
elastic band (NEB) calculations of the Bain path for the γ(FCC)→α
(BCC) transformation in iron. (Li, J. Private communication, 2001).
During this structural transformation, it is assumed that the two
110h iγ axes concurrently expand equally while the 001h iγ axis
shrinks to form a BCC structure. The calculated minimum energy
path (MEP) and lattice transformation pathway are shown,
respectively, in Fig. 1a and b. Following the spirit of the phase-
field (PF) approach, we can introduce an order parameter (OP) in
the reaction coordinate along the MEP to characterize this phase
transformation, with its value coupled with the transformation
strain (calculated based on the lattice correspondence in Fig. 1b)
shown in Fig. 1c. Although it seems that the transformation strain
pathway is mainly linearly coupled with the OP, the corresponding
volume change (i.e., the trace of the transformation strain tensor),

shown in Fig. 1d, indicates that the system initially undergoes
increasing hydrostatic compression but eventually ends up with
the martensitic state subject to a hydrostatic tension. Such a
complex variation is completely missed when linear coupling
between the transformation strain and the OP is assumed as
shown in Fig. 1d; on the contrary, even a simple quadratic function
can capture the essential nonlinear pathway as shown in Fig 1c
and d. (More accuracy can be obtained when higher order terms
are involved.)
The nonlinearity of these atomistically/experimentally revealed

transformation pathways are, however, missing in the current
formulation of the phase-field microelasticity (PFM) theory
developed by Khachaturyan,8 which has been the foundation for
studying microstructure evolution during deformation and phase
transformations in solids.9–11 In PF modeling, each distinctive
phase is represented by a unique set of OPs that usually take the
value of 0 before transformation (i.e., the parent phase) and 1 after
transformation (i.e., the product phase). The intermediate values of
the OP (e.g., between 0 and 1), which represent the phase
boundary region under the assumption of diffuse interfaces, are
usually assumed to be linearly coupled with physical quantities
such as density/volume, concentration, transformation strain,
atomic shuffle, degree of order, and magnetic/electric polarization.
The total free energy can then be formulated as a functional of the
OP fields, and a variational approach is employed to study the
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dynamics towards equilibrium. The linear coupling between the
OPs and the physical quantities can be considered as a good
approximation when the final microstructure is of interest and the
interface contribution is relatively small. However, if the focus is on
nucleation and/or the subsequent growth that is dominated by
the creation of interfaces, how the OPs and physical quantities are
coupled could make a considerable difference, especially in solids.
For instance, the size, shape, and activation energy of a critical
nucleus could be significantly different along a non-linear strain
path as compared to those along a linear path. It also needs to be
pointed out that although one may think of lumping the
nonlinearity into the “chemical” (bulk) free energy instead of an
explicit consideration, terms such as the elastic strain energy,
related to coupling between the OP and the transformation
strains, are inherently non-local and cannot be described by a
local chemical free energy term.
Clearly, an explicit PF formulation that can directly account for

the nonlinear coupling between OPs and physical quantities is
highly desired so that results from atomistic calculations (e.g.,
Fig. 1) can be integrated directly with PF to provide multiscale
modeling in a quantitative manner. Nonlinear couplings between
OPs and physical quantities have been previously used in PF
modeling of ferroelectric transformations,12 atomic ordering,13

dislocations,14 etc. In the area of PF modeling of MT, the work in
ref. 15 considered a linear coupling between the square of the OPs
and the eigen-strain tensor; the mean-field Landau theory of MT in
refs. 16, 17 employed a more complicated polynomial function of
OPs that are coupled with the eigen-strain tensor. However, both
methods assumed a collinear coupling in the six-dimensional
strain space, i.e., the OP is coupled equally to every component of
the eigen-strain tensor. Recently, Vattré and Denoual18 proposed a
PF MT model with the strain pathway explicitly described in the
six-dimensional strain space, which, however, still assumed a
linear (and collinear) transformation path from the parent to the

product phase. In some other PF models of MT (e.g., refs. 19–21)
the structural OPs are formulated directly using a linear combina-
tion of strain components (regardless of small-strain19 or finite-
strain20), which lead to a framework significantly different from
the PFM based models. Nevertheless, the direct effect of nonlinear
and noncollinear coupling between OPs and transformation strain
pathways on MT dynamics has not been considered in any of
these studies.
In this paper, we consider both nonlinear and noncollinear

coupling between OPs and transformation strains during MTs in
the PFM framework. In previous PF modelings of MTs, the
resulting strain energy is calculated using the PFM theory based
on linear coupling between the OPs and the stress-free-
transformation-strain (SFTS). The PFM theory can be traced back
to Eshelby’s classical work22 on transformation-induced elasticity
and has been employed in PF simulations of solid-solid phase
transformations and even the modeling of deformation in
amorphous alloys.23, 24 It is worth pointing out that Eshelby’s
pioneering work is also the basis for fast-Fourier-transform (FFT)
based schemes for computing the micromechanical fields of
periodic heterogeneous materials directly from an image of the
microstructure (i.e., image-based approaches),25, 26 as well as the
recently emerged FFT-based crystal plasticity models.27–29 Here
we extend the PFM theory by taking into account a general
nonlinear coupling between OPs and SFTS tensors. Using the
generic cubic→tetragonal MT, previously studied by Shen et al.
using the original PFM theory,30 as an example, we quantify the
differences in the fundamental properties of a critical nucleus and
growth kinetics. It will be shown that while the characteristic
features of the final microstructure remain the same for the new
PFM theory, hereafter called generalized PFM (GPFM) theory, the
configuration and activation energy of a critical nucleus differ
significantly when nonlinear coupling is considered. In addition,
the far-field hydrostatic stress associated with the critical nucleus

(a) (b)

(c) (d)

Fig. 1 Atomistic calculation of a free energy and b lattice parameters, and the corresponding c transformation strain components and d
volume change along the Bain path in iron γ→α transformation
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of a pure-shear martensite is actually nonzero if nonlinear
transformation pathways are considered. This case study indicates
the significance of nonlinear transformation pathways when
considering solid-solid phase transformations. The GPFM formu-
lated in this study provides a general framework to incorporate
directly atomistic pathways into mesoscale microstructure model-
ing during solid state phase transformations.

RESULTS
The results of this work are presented in two major sections. First,
we will discuss the development of our methodology and
formulation. Then, we will demonstrate the significance by
applying the new theory to a cubic→tetragonal martensite
transformation.

GPFM incorporating nonlinear transformation strain pathways
Starting with the original PFM theory, the total elastic energy Eel

for a given microstructure, considered as a configuration with
distributed Eshelby inclusions22 (product phases) coherently
embedded in the original elastic medium (parent phase), is given
as a functional8

Eel ¼ 1
2

Z
dxCijklεij xð Þεkl xð Þ

þ V
2
Cijklεijεkl � εij

Z
dxCijklεkl xð Þ

� 1
2
⨍ dg

2πð Þ3 ni
~σT
ij ðgÞΩjkðnÞ~σT�

kl gð Þnl

ð1Þ

where εij(x) is the transformation strain tensor field at position x
and ~σT

ij gð Þ is the Fourier transform of σT
ij xð Þ � Cijklεkl xð Þ, where g is

the reciprocal vector and Cijkl is the elastic stiffness tensor. It is
assumed here that the elastic modulus is homogeneous and the
same to both parent and product phase. εij is the overall
homogeneous strain of the material and V is the volume, and
Ω nð Þ½ ��1

jk � Cijklninl where n ¼ g= gj j. The symbol ⨍ indicates that
the integration excludes g = 0 point in the reciprocal space.
For a given microstructure, defined as a collection of a hierarchy

of structural and chemical non-uniformities (imperfections or
defects),11 a unique distribution of transformation strain can be
identified. Within the non-uniformity such as a second phase or
slipped region, εij(x) is equal to the pre-defined SFTS, the so-called
“eigen transformation strain”, while at interfaces, unless the
transient states (or the transformation pathway) are also pre-
determined, εij(x) is generally unknown. Since the philosophy of PF
is to formulate a total energy functional in terms of a set of OPs
{ηi(x)} that completely describe the microstructure, a coupling
between ε(x) and {ηi(x)} is required so that Eq. (1) can be written in
terms of OPs and thus incorporated into the total energy
functional of PF models.
Considering p = 1,…, Nv with Nv being the total number of

product phases, we have a set of pre-defined SFTS tensors

ϵpij

n oNν

p¼1
assigned to the Nv product phases, and correspondingly

a set of Nv OPs, ηp xð Þ� �Nν

p¼1
to describe the microstructural

evolution. In the original PFM, the OPs are linearly coupled with
the SFTS tensors and we have the transformation strain εij(x)
obtained as

εij xð Þ ¼
XNν

p

ϵpijηp xð Þ: ð2Þ

This has been considered as a sound approximation, given that
the transformation strain is overall small in the same sense when
people use, e.g., Vegard’s law for concentration-strain relationship.
Substituting Eq. (2) into Eq. (1) gives rise to the energy functional
in terms of OPs.

What if the OPs are not necessarily linearly coupled with the
SFTS tensors, just like what is shown in Fig. 1? In such cases,
nonlinear couplings between ηp(x) and ϵpij are obviously needed to
give rise to the transformation strain field εij(x) instead of using
Eq. (2). In Fig. 1c we show the fitting results using a second-order
polynomial. Not only the transformation strain components
exhibit a good fit by only introducing a quadratic, but also the
nonlinear variation of volume change along the transformation
pathway (Fig. 1d) is faithfully captured. If the linear coupling of
Eq. (2) is assumed, the trace of the transformation strain tr εij xð Þ� � �
εkk xð Þ ¼PNν

p ϵpkkηp xð Þ where summation over repeated indices is
assumed. As a result, if the SFTS tensors are traceless, i.e., ϵpkk ¼ 0,
the transition states will always be a volume-conserved state,
excluding physics such as the transient dilatation of dislocations and
MT. (Even for cases where ϵpkk ≠ 0, a nonlinear volumetric change
phenomenon, shown in Fig. 1d, cannot be captured either.)
To account for complex nonlinear couplings, we formally write

εij xð Þ ¼
XNν

p

ϵ�pij Λ
ij
p ηp xð Þ� � ð3Þ

where Λij
p ηp xð Þ� �

is a function with the coefficient of the leading
(linear) term being 1, e.g., Λij

p ηp
� � ¼ ηp þ αijpη

2
p for a quadratic

form. In general, MTs can be classified into two types: proper and
improper.15, 31 In the former the OPs are directly the components
of SFTS (or their combinations), while in the latter the OPs
represent the primary transformation mode of non-affine atomic
shuffling that induces the SFTS as a secondary mode. Never-
theless, in both cases the SFTS tensors can be formally written as a
function of the OP as in Eq. (3). Note that in the previous modeling
of improper MT,15 η2p has been used to account for the degeneracy
of two antiphase states (distinguished by ± ηp). In this case, the
linearity is referred to the coupling between η2p and SFTS tensors
and the current discussion and the formulation to be developed
are still valid upon a simple substitution of ηp ! η2p . Since
nonlinear term coefficients, e.g., αijp , are usually small and ϵ�pij is
thus the first order approximation of the SFTS, ϵpij , hereafter we will
not differentiate the symbol ϵ�pij from ϵpij for convenience as long as
the context is clear. The indices i and j go to the superscript rather
than the subscript, indicating that we are doing an entrywise
product, i.e., Hadamard product without summation over the
repeated index i and j. In other words, we take into account the
fact that the coupling of OPs in the six-dimensional strain-space
can in principle be noncollinear. It needs to be pointed out that
the current form of Eq. (3) does not transform like a tensor in a
general coordinate change due to the use of Hadamard product. A
general reference-invariant vector/tensor equation in place of Eq.
(3) requires adequate physical understanding of the usually
complex transformation strain pathways and its existence may
not be guaranteed; our current treatment relies on approximating
the pathways in the coordinate used by atomistic calculation and
maintain the same coordinate for the subsequent PF simulations.
The physical significance of allowing noncollinear coupling

between OPs and transformation strains is based on the fact that
in certain solid-solid transformations, one strain component (e.g.,
an in-plane shear) may be strongly coupled with other transfor-
mation mode such as atomic shuffle, which is, however,
decoupled from the other strain components. In such cases, the
form of Λij

p ηp xð Þ� �
must differ significantly (i.e., in terms of

nonlinear terms) for different strain components.
We now derive the GPFM theory by adopting the general form

specified in Eq. (3). For a strain-controlled boundary condition,
since the applied strain is fixed during the phase transformation,
one may just assume εij � 0. In addition, because of the
decomposition εij xð Þ ¼ εij þ δεij xð Þ, we have ∫ εij(x)dx = ∫ δεij(x)
dx≡ 0, and thus ~εij g ¼ 0ð Þ ¼ 0. As a result, the 2nd and 3rd terms
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in Eq. (1) vanish. Substituting Eq. (3) into Eq. (1), we arrive at

Eel ¼ 1
2

X
p;q

Z
dg

2πð Þ3 Dtsmn nð Þϵptsϵqmn
~Λts
p gð Þ~Λmn�

q gð Þ ð4Þ

where Dtsmn(n) is a 4th-rank tensor field defined in the Fourier
space –

Dtsmn ¼ Ctsmn; within a reciprocal volumeof 2πð Þ3= V atg¼ 0;

Ctsmn � niCijtsΩjk nð ÞCklmnnl ; elsewhere:

(
ð5Þ

Obviously the Bpq(n) tensor
8, 32 in the original PFM is simply

retrieved by recognizing

Bpq nð Þ ¼ Dtsmn nð Þϵptsεqmn ð6Þ
where summation over four repeated indices are taken. What
prevents us from doing the summation in Eq. (4) is the fact that
the coupling between OPs and SFTS tensors differ from one
component to another, i.e., noncollinear coupling. If all strain
components are coupling collinearly with OPs, the same Bpq is
retrieved by dropping the superscript in Λp in Eq. (4) and
summing over repeated indices as in Eq. (6). The functional
derivative that is used in integrating PF dynamics equations are
then obtained as

δEel

δηp xð Þ ¼
X
t;s

X
q

Dtsmn nð Þϵqmn
~Λmn
q gð Þ

( )
r

ϵpts
∂Λts

p

∂ηp

�����
x

ð7Þ

where {…}r represents the inverse Fourier transformation to real
space. If αtsp ¼ 0 in the previous quadratic form, the above result
reduces to the original PFM result as is expected.
If a given applied traction σappl

ij , which is taken to be zero here as
for a “relaxed boundary”, is ascribed, the total elastic energy then
becomes

Eel ¼ 1
2

Z
dxCijklεij xð Þεkl xð Þ � 1

2V
Cijkl

Z
dxεij xð Þ

Z
dx

0
εkl x

0
� �

� 1
2
⨍ dg

2πð Þ3 ni
~σT
ij gð ÞΩjk nð Þ~σT�

kl gð Þnl

¼ 1
2

X
p;q

Z
dg

2πð Þ3 Dtsmn nð Þϵptsϵqmn
~Λts
p gð Þ~Λmn�

q gð Þ

ð8Þ

where Dtsmn(n) is now defined as

Dtsmn ¼ 0; within a reciprocal volume of 2πð Þ3=V atg ¼ 0;

Ctsmn � niCijtsΩjk nð ÞCklmnnl; elsewhere:

(
ð9Þ

Again one can check that the above results turn into those
of the original PFM when Eq. (3) is reduced to Eq. (2). Finally
the derivative for this relaxed-boundary will remain the same as in
Eq. (7).

Application to a cubic→tetragonal martensite transformation
Irrespective of the types of transformations, as long as ab initio
calculations are available for constructing (e.g., spline fitting using
the ab initio sampling points) the free energy surface, our GPFM
formulation presented in the previous section can then be utilized
to perform PF simulations of the phase transformations. This is
similar to incorporating the generalized stacking fault energy
surface into PF dislocation dynamics simulations, which has been
shown recently to be able to predict exactly the same defect
structure and energy obtained from atomistic calculations.33, 34 In
this study, however, in order to focus on illustrating the effect of
the new GPFM, we choose a cubic to tetragonal MT that has been
studied previously using the original microelasticity theory30 and

compare simulation results obtained from the two approaches. It
also needs to be pointed out that the FCC→BCC data shown in the
Introduction section is only one-dimensional showing the free
energy data along one transformation path and, thus, cannot be
directly used in our later simulations that involve multiple variants.
Once atomistic data are available to characterize the free energy
landscape in the multidimensional transformation strain space,
carrying out multiscale PF simulations based on GPFM should be
straightforward, as has been demonstrated in refs. 33, 34.
The kinetics of cubic to tetragonal MT consists of nucleation and

growth stages that occur at very distinctive time and length scales
and thus require different methods to study. For the growth, we
carry out PF simulations with both PFM and GPFM theories being
incorporated to study the influence of different transformation
pathways. For the nucleation, it is essential to determine the
critical nucleus. This is done by following the previous PF-based
NEB method.30 Since the transformation pathways determine the
transition states and hence the elastic properties and strain energy
of austenite/martensite interfaces, which usually place a friction
force to MT and are believed to control the martensite
nucleation,35 it is critical for any model not to have any prior
constraint about the transformation pathway.11 This is exactly the
goal of introducing GPFM to formulate the strain energy in PF.
The cubic to tetragonal MT has three variants with the following

three SFTS tensors

ϵ 1ð Þ
ij ¼ ϵ0

2 0 0

0 �1 0

0 0 �1

0B@
1CA; ϵ 2ð Þ

ij ¼ ϵ0

�1 0 0

0 2 0

0 0 �1

0B@
1CA;

ϵ 3ð Þ
ij ¼ ϵ0

�1 0 0

0 �1 0

0 0 2

0B@
1CA:

ð10Þ
To investigate the influence of the incorporated nonlinear path,

we use the quadratic nonlinear form in terms of η2p for modeling
the improper MT,15 i.e., Λij

p ηp
� � ¼ η2p þ αijpη

4
p in equations devel-

oped previously. In particular, cases of different nonlinear term
coefficients listed in Table 1 are considered for the current generic
MT. The coefficients αijp in Table 1 have the same order of
magnitude as compared to the fitted values using the atomistic
transformation strain pathway of γ→α MT in iron as shown in
Fig. 1c. Thus, the following results should bear certain practical
significance.
To study the cubic to tetragonal martensite transformation, we

use the same chemical free energy density as in ref. 30, i.e.,

⨍ ηp xð Þ� �� � ¼ Δf0
A1

2

Xν
p

η2p xð Þ � A2

4

Xν
p

η4p xð Þ þ A3

6

Xν
p

η2p xð Þ
 !3" #

ð11Þ

Table 1. Different transformation pathways in the form
Λijp ηp
� � ¼ η2p þ αijpη

4
p

Transformation Pathway α111 α221 α331

LP 0 0 0

NP1 0.3 0.3 0.3

NP2 −0.05 0.1 0.1

NP3 0.0 0.1 0.1

Note: Only coefficients for the 1st variant are shown. The ones for other
variants can be obtained based on the symmetry relationship between the
variants
LP linear pathway, NP nonlinear pathway
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with coefficients A1 = 0.2, A2 = 12.8, and A3 = 12.6, which has a
minimum at η = 0 representing the cubic phase and two minima
at η = ±1 representing the tetragonal phase (“±” corresponding to
two possible antiphase states), and the energy difference between
the cubic and tetragonal phases equals to Δf0. Using the
coefficients of exactly the same Landau free energy (Eq. (11))
that are obtained by first-principle calculations in ref. 36, together
with the equation Δf0 ¼ Qlat T � T0½ �=T where Qlat is the experi-
mentally measured latent heat of MT,31 it can be shown that the
current values used for the coefficients in Eq. (11) are consistent
with the first-principle calculations. The total free energy of the
system is formulated as a functional of the OPs

G ¼ G ηp xð Þ� �� � ¼
Z

⨍ ηp xð Þ� �� �þX
p;q

κpq∇ηp xð Þ∇ηq xð Þ
" #

dx

þ 1
2

X
p;q

Z
dg

2πð Þ3 Dtsmn nð Þϵptsϵqmn
~Λts
p gð Þ~Λmn�

q gð Þ

�
Z

σext
ij xð Þεij ηp xð Þ� �� �

dx;

ð12Þ
which contains the contributions of local free energy density,
spatial gradient of the OP fields (in the first integral), the
coherency elastic strain energy (second integral, i.e., Eq. (4)), and
the interaction with an external stress field σext(x). The gradient
coefficients κpq can in principle be formulated to reflect the
interfacial energy anisotropy; in our current study, for the sake of
simplicity but without loss of generality, we assume isotropic
interfacial energy by reducing κpq to a scalar constant.
In the first subsection of the following part, we use the

stochastic Langevin equation based on the time-dependent
Ginzburg-Landau kinetic equation15 to simulate qualitatively the
MT. In the second subsection, we employ a PF-based NEB method,
which uses the well-developed MT microstructure obtained from
the first subsection as the end image of the NEB calculation, to
determine quantitatively the properties of the critical nucleus, as
well as the MEP (see more details in ref. 30). In these simulations,
the physical length scale of the computational cell can be
determined by evaluating the dimensionless interfacial energy of
a well relaxed polytwin martensite microstructure obtained in the
simulation, γ*, which is related to the dimensional physical
quantities of a given system by γ� ¼ γ

Δf0 l0
with γ being the twin

boundary energy and l0 the physical length of one computational
gridpoint.31 Using the typical values of Δf0 ~ 1 × 108 J/m3 and γ ~
0.01J/m2 for MT,15, 31 it is found that in our current simulations l0 ~
0.2 Å, which is the appropriate length scale for studying the
nucleation and the early stage of growth, as presented in the
following.

Growth kinetics
With the complete PF free energy functional, a set of PF
simulations using the same initial configuration but different
coefficient αijp listed in Table 1 are carried out. The ratio of elastic
energy to chemical energy, defined as ξ � μϵ20=Δf0, is used to
characterize the undercooling or the “strength” of MT15, 37 and set
as ξ = 0.5. In the framework of PFM, the derivation of ξ is readily
seen30 by writing the transformation strain ϵij ¼ ϵ0

Pν
p eϵpijηp whereeϵpij is a normalized strain tensor that can be identified in Eq. (10). In

the current GPFM, it can be shown that the transformation strain
can be written in a similar form, i.e., ϵij ¼ ϵ0

Pν
p eϵp;nij Λij

p where the

new normalized strain tensor eϵp;nij � eϵpij= 1þ αijp

� �
. The relationship

between the two normalized strain tensors are owing to the
constraint that when ηp = 1 the two corresponding transformation
strain tensors must be equal. Substituting into the strain energy
formulation in Eq. (12), it is easy to see that the definition and the

meaning of ξ remain the same when nonlinear coupling is
considered.
In order to separate the growth from the nucleation stage,

Langevin fluctuations (to model thermal fluctuation and the
resulting nucleation) is applied to the initially homogeneous
austenite phase during PF simulations, which are run for the same
number of PF steps using the transformation pathways listed in
Table 1 to compare the resulting growth kinetics. The final
microstructures are shown in Fig. 2, where polytwin structures
consisting of alternating layers of two tetragonal variants are
observed. Two domains in antiphase relationship (corresponding
to plus and minus sign in OP) are also observed, which is
represented by different colors in one martensite layer as shown
in Fig. 2. The corresponding growth kinetics of different pathways
can be compared by plotting the fraction of total transformed
volume against the simulation time, as shown in Fig. 3a. It
suggests that the growth kinetics can differ significantly, depend-
ing on the exact transformation pathways. Taking LP as the
reference, the growth rate of martensite can either increase or
decrease (significantly) by adopting a nonlinear transformation
pathways. In order to have a quantitative comparison between
different pathways, which in the current GPFM theory become
more complicated due to the noncollinear coupling, we plot the
von Mises strain of the transformation strain tensor along the
pathways, as shown in Fig. 3b. It is suggested that the overall
ranking of the four pathways (in Table 1), in terms of the
magnitude of von Mises strain, is NP1 < NP3 < LP < NP2, even
though the difference among the latter three is significantly
smaller as indicated by Fig. 3b. This ranking of von Mises strain is
the same as that of the growth kinetics shown in Fig. 3a, which is
not surprising because von Mises strain is an equivalent scalar
measure of the original full strain tensor and directly indicates the
amount of the resulting strain energy density. While the chemical
energy density difference between the austenite and martensite
remains the same for all the pathways, the interface-related strain
energy, as well as the stress field in the vicinity of the diffuse
interface can vary significantly and a change of the growth rate is
thus expected. A previous model38 has also showed that mobility
of martensite interfaces are largely determined by the corre-
sponding elastic property.

Critical nucleus and MEP
To investigate the effect of nonlinear transformation pathways on
the properties of a critical nucleus (e.g., size, shape, and activation
energy), we determine the critical nucleus of the MT using the PF
functional-based NEB method.30 (For other computational tools of
determining the nucleus in phase transformation, see a recent
review in ref. 39.) Owing to the usage of the so-called “free-end”
treatment,40 which is also used in ref. 30, we can take the well-
relaxed configurations like those obtained in Fig. 2 as the end-
node images in our NEB calculation, and use a linear interpolation
between the start-node image (homogeneous austenite phase)
and the end-node image to set up the rest initial nodes. NEB
relaxation is then performed to drive the node images to
converge to the MEP. Figure 4 shows the obtained MEP for
different elastic to chemical energy ratio ξ. In all cases, the
transformation pathway NP1 exhibits a nucleation barrier that is
significantly lower than those obtained for the rest pathways,
which is actually consistent with its fastest growth rate shown in
Fig. 3a. The nucleation barrier along NP3 is the second lowest one,
although relatively much closer to that along LP and NP2, which
two are almost the same.
Apart from the energy barriers, the underlying critical nucleus

(or saddle-point) configurations also differ significantly, as can be
seen in Fig. 5. When ξ = 0.5, representing a relatively larger
undercooling compared with the cases that will be studied later,
the saddle-point configurations (Fig. 5a–d) for all pathways
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considered are made of a single variant. The OPs in these nuclei
take mostly intermediate values between 0 and 1, suggesting a
typical nonclassical nucleation scenario, same as in ref. 30.
When ξ increases from 0.5 to 0.8, the critical nucleus

configuration changes from single-variant to two-variant for
transformation pathways LP (same as in ref. 30), NP2, and NP3,
but remains a single-variant for NP1, as shown in Fig. 5e–h. This
suggests that although an increased ξ certainly promotes the
dominant role played by the elastic energy in determining the
critical nucleus configuration in LP, NP2, and NP3, it is still not high
enough for NP1 to switch to a MEP that has a two-variant saddle-

point, owing to its specific coupling between the OPs and eigen
strains. More interestingly, the symmetrical two-variant critical
nucleus along LP loses symmetry when the transformation
pathway is changed to either NP2 or NP3, even though the
difference in the nucleation barriers is relatively small as compared
to NP1, as shown in Fig. 4b. The two variants now appear as two
separate plates with an acute angle being formed between them.
In addition, the two variants have apparently different sizes.
Finally, when ξ = 1.0, the morphology of the nucleus will change

to the results shown in Fig. 5i–l. As is expected, the nucleation
requires a configuration with a much larger volume (consequently

(a) (b)

Fig. 3 a Volume fraction of martensite during PF simulations as in cases shown in Fig. 2. b Von Mises strain of transformation strain tensor
along different transformation pathways, with inset showing an enlarged portion to indicate the ranking

Fig. 2 Polytwin structures consisting of two orientational variants of martensite are obtained from phase filed dynamics using transformation
pathway of a LP, b NP1, c NP2, and d NP3 as defined in Table 1. Note that in each martensite layer, two domains (represented by different
colors) in antiphase relationship (corresponding to plus and minus sign in OP) are observed
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larger energy) to overcome the much higher strain energy penalty
compared with cases of ξ = 0.5 and ξ = 0.8. For the case of LP, a
critical nucleus of internally twinned two-variant configuration is
obtained, same as in ref. 30. For NP1, the critical nucleus is still
single-variant, while for NP2, the critical nucleus configuration is

similar to its corresponding case when ξ = 0.8 (Fig. 5g), except that
the two variant plates becomes much larger and thinner with
nearly equal size. The critical nucleus configuration along NP3 is
similar to the internally twinned two-variant along LP, with the
symmetry slightly changed as well. Thus depending on the actual

(a) (b) (c)

Fig. 4 MEPs calculated for elastic to chemical energy ratio of a ξ= 0.5, b ξ= 0.8, and c ξ= 1.0

Fig. 5 Critical nucleus configuration for different transformation pathways (from left to right column: LP, NP1, NP2, and NP3) when elastic to
chemical energy ratio is (a–d) ξ= 0.5, (e–h) ξ= 0.8, and (i–l) ξ= 1.0. Two colors represent two different orientational variants
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transformation pathway, the configuration of a critical nucleus and
the nucleation barriers may change significantly, which is
expected to have a profound influence on the subsequent
transformation kinetics and the final microstructure.

DISCUSSION
Nucleation and growth are vital phenomena for understanding
solid-state phase transformations and deformations. The emer-
gence of nanostructured materials,41 wherein the time and length
scale of the involved nucleation and growth may be significantly
confined, prompts further need for more detailed understanding
of the transformation pathways. Our above simulations, though
still in a parametric manner, have revealed the significant role
played by the transformation pathways in determining the
properties of a critical nuclei during structural transformations.
To further assess the significance of these results, we analyze the
stress state, in particular, the hydrostatic stress, σHyd ≡ (σ11 + σ22 +
σ33)/3, in Fig. 6, which is associated with the saddle-point
configurations in Fig. 5i and k. It is shown that in the vicinity of
the critical nucleus, there are regions of either under hydrostatic
tension or under hydrostatic compression, which is true for both
transformation pathways. However, the symmetry of σHyd is
different: center-symmetry for LP but mirror-symmetry (about the
twin boundary) for NP3. In both cases, the hydrostatic tension
tends to build up at the tip where the two variants are closing up,
while the hydrostatic compression tends to be built up at the tip
where the two variants are “branching”. These results are
consistent with the exhibited morphology of the critical nuclei.
We further compare the resulting far-field σHyd (which is calculated
by volume-averaging σHyd over the entire computational cell) of
different pathways in the case of ξ = 1.0 and show the result in
Table 2. For a quantitative comparison, we calculate the ratio of
far-field σHyd to far-field von Mises stress σVM, which is expected
for all shear-dominant MTs subject to clapped boundary condi-
tions. Table 2 suggests that there is clearly a nonzero far-field
hydrostatic stress for pathways NP2 and NP3, but zero for LP and
NP1. In other words, the embryos of a pure-shear MT can actually

be hydrostatically “charged”, depending on the transformation
strain pathways.
In practice, it is the far-field σHyd that drives other crystalline

defects such as point defects, which also have nonzero hydrostatic
component of the resulting stress field, to interact with the critical
nucleus and may fundamentally change the subsequent kinetics
and lead to very distinctive morphology and properties. For
instance, the diffusion potential42 due to vacancy-exchange
mechanism is proved to be μv ¼ kBT ln

Xv
Xe
v

� �
� ΩrσHyd, where kB

is the Boltzmann constant, T is temperature, Xe
v is the vacancy

concentration that is in equilibrium with a stress-free flat surface, Xv
is the local vacancy concentration, and Ωr is the vacancy relaxation
volume. As a result, the interaction between vacancy and
martensite/austenite interfaces can be drastically changed by
varying the transformation pathway (hence σHyd according to
Table 2). In fact, it has been proposed based on experiments that
excess quenched-in vacancies may migrate to martensite/austenite
interfaces as a sink and reduce the interface mobility, resulting in a
significant change of Ms and Mf temperatures.43 Another example
would be solute segregation at coherent precipitate/matrix
interfaces (or twin/grain boundaries) that has been confirmed by
many experiments.44–47 The exact driving forces for solute
migration to coherent interfaces/boundaries (with relatively low
interfacial energy as compared to that of semi-coherent and
incoherent ones) are still unclear and deserve more systematic
study. Static first-principle and/or continuum calculations have
suggested that either electronic (chemical) effects45, 46 or elastic
interaction,47 similar to our finding here, can lead to the observed
segregation. All these examples indicate that an accurate way of
considering the elastic property of an interface (in particular, the
hydrostatic component that is not expected based on a linear
transformation pathway) is essential for studying the interface-
dominated or related microstructure evolution at nanoscale.
Regarding the change of the critical nucleus configuration, i.e.,

from a single-variant to a multiple-variant configuration, qualita-
tive analysis and understanding may be achieved by employing
the following dimensionless ratio

ζ ¼ Es
Ee

¼ γsA
μϵ20V

¼ r0
L

ð13Þ

where Es and Ee represent, respectively, the interfacial and elastic
energy of a critical nucleus. The former is estimated as the product
of the specific interfacial energy, γs, and the interfacial area, A, and
the latter the product of the average elastic energy density, μϵ20,
and the critical nucleus volume, V. Based on the dimensional
analysis, we can further define two characteristic length scales.
One is r0 ¼ γs=μϵ

2
0 characterizing a material property, and the

other is L = V/A characterizing the size of the critical nucleus. The

Table 2. Ratio of the far-field hydrostatic stress σHyd to von Mises
stress σVM associated with the critical nucleus of different
transformation pathways.

Transformation Pathway LP NP1 NP2 NP3

σHyd/σVM 0 0 4.4% 2.9%

Fig. 6 Hydrostatic stress distribution in a two-dimensional cross-section through the saddle-point configuration for a LP (Fig. 5i) and b NP2
(Fig. 5k). Note that boundaries of two variants are represented, respectively, by closed green and red lines and colorbar is in reduced unit
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ratio ξ has been used to analyze the equilibrium shape of a
coherent particle.31, 48, 49 It can be seen from the simulation results
(Fig. 5) that as the elastic energy contribution increases (increasing
ξ and decreasing ζ ), the volume of the critical nucleus increases
for all four pathways considered; more interestingly, for LP, NP2,
and NP3, this leads to the change of the critical nucleus from a
single-variant configuration (when the interfacial energy contribu-
tion dominates) to a self-accommodated multiple-variant one
(when the elastic energy contribution dominates). These results
are consistent with the physical argument behind Eq. (13), e.g.,
when the elastic energy contribution becomes dominant over the
interfacial energy contribution, the critical nucleus maintains a
strain energy accommodating multiple-variant structure, and
when the situation is reversed, the critical nucleus changes to a
single-variant structure to eliminate the energy associated with
the variant-variant boundary. A special case is NP1, where the
critical nucleus remains as single-variant configuration even at ξ =
1.0. This can be understood by recalling that the intermediate von
Mises strain along NP1 is significantly lower than those of the
other pathways, as shown in Fig. 3b. Considering that the elastic
energy is proportional to the square of strain and the OP of the
critical nucleus in Fig. 5 are right in the intermediate range (~ 0.5),
it can be expected that for NP1 the interfacial energy can still
dominate over the elastic energy and the critical nucleus remains
as single-variant configuration. Since the critical nucleus config-
urations predicted in the simulations are highly non-classical,50 it
is difficult to quantify the ratio of Eq. (13) for the critical nucleus.
Finally, it is worth pointing out some of the limitations in the

current work that can be addressed in the future. First of all, the
nonlinear and noncollinear coupling is confined in the interface
region, and the thickness of the interface region is controlled by
the Landau free energy landscape and the gradient energy
coefficients in PF modeling; to obtain a quantitative result, direct
incorporation of atomistically informed transformation strain
pathway, free energy, and the gradient energy coefficients should
be used. Secondly, it is assumed that austenite and martensite
have the same elastic modulus, which can be improved by using
the inhomogeneous elasticity solver for PFM.51 Finally, small-strain
framework is used in the microelasticity theory, which prevents
the proposed nonlinear and noncollinear transformation strain
pathways from being investigated at finite strains. A GPFM
framework utilizing the finite strain theory still using spectral
method28 is currently under development.

CONCLUSIONS
The PFM theory is re-examined, in particular, in terms of the
assumption of linear mapping between phase fields and SFTS
tensor components. Motivated by the fact that many experiments
and direct ab initio calculations on solid-state deformation and
phase transformations such as dislocation motion, MT, and the
deviation from Vegard’s law in solid solution model have revealed
complex nonlinear transformation pathways, we have developed
a GPFM theory to account for general nonlinear (and noncollinear)
couplings between OPs and transformation strains. PF simulations
incorporating this newly-developed GPFM have been carried out
in a cubic to tetragonal martensite transformation and show that
the nonlinear transformation pathways can significantly change
the martensite growth rate. The GPFM-based PF energy functional
is then incorporated in NEB calculations to determine the
corresponding critical nucleus of martensite. It is shown that the
incorporation of nonlinear transformation pathways can signifi-
cantly change the morphology and activation energy of the
critical nuclei. In particular, the critical nuclei can possess nonzero
far-field hydrostatic stress, even though the final product phase is
a pure-shear martensite with no volume change, which could
never be expected by the original PFM theory. The corresponding
physical consequence is that martensite embryos can be

hydrostatically “charged” and interact with other embryos and
crystalline defects with nonzero hydrostatic stress components,
e.g., point defects, leading to possible interesting phenomena
such as vacancy clustering at austenite/martensite interfaces and/
or solute segregation at coherent precipitate/matrix interfaces.
The newly developed GPFM theory provides a framework of
incorporating general transformation pathways, determined either
from atomistic calculation or experimental characterization, into
PF simulations, which leads to a multiscale quantitative modeling
scheme to systematically study solid-solid phase transformations.

METHODS
The PF governing differential equations for the time evolution of
martensite transformation are numerically solved using the (first-order)
forward Euler method. Our GPFM formulation is solved using Fourier
spectral method; the numerical solution is implemented using the open-
source FFTW MPI library codes (http://www.fftw.org/fftw2_doc/) for the FFT
algorithm on distributed-memory machines supporting MPI. The determi-
nation of the critical nucleus of martensite employs the NEB method52

combined with PF energy functional30 and the numerical implementation
follows the “free-end” treatment40.
Regarding the calculation procedure used in obtaining the atomistic

data for the FCC-to-BCC martensite transformation in iron presented in
Fig. 1, the empirical potential of ref. 53 is used to compute the total energy
and stress. The calculations are started with an FCC lattice and an
incremental compression strain εzz is applied at each step, allowing the
other five strains (εxx, εyy,…) to relax fully so that only stress component σzz
is non-zero and all the other five stress components are zero. This is
continued until εzz reaches the Bain strain, i.e., when σzz = 0 again and the
system finds itself in another locally stable state (i.e., the BCC state).
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