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Inorganic materials with covalent or ionic bonding are well 
known to be much stronger in compression than in tension. That 
is, for a given material, the experimentally recorded compressive 

strength (σC) is usually much higher than the tensile strength (σT)1–3. 
However, this apparent tension–compression (T-C) asymmetry is 
not the intrinsic inelastic response of these materials, but instead 
originates from the very different sensitivity to preexisting flaws 
(such as the internal voids, pores and surface blemishes)4,5 under 
tension versus compression. Specifically, a tensile load tends to open 
up the flaw into an incipient crack and accelerate the crack propaga-
tion, such that fracture sets in prematurely at relatively low stresses 
to preempt global yielding6. By contrast, flaws tend to close up 
under a compressive load, such that the compressive yield strength 
is much higher and close to the intrinsic strength of the material3. 
A fundamental question then naturally arises, as to whether a T-C 
asymmetry remains when the effects of flaws are eliminated, and if 
it does, would σC be higher or lower than σT, by how much and why.

To answer the question posed above, we resort to samples that 
are initially nearly free of extended defects7, such that the chances 
for premature fracture are minimized8,9. One known way to do 
this is to reduce the physical dimensions of the tested volume, as 
ultrahigh strength close to the theoretical limit has been demon-
strated before in micro- and nano-scale samples8,10. We, therefore, 
carried out quantitative compression versus tension testing of 
submicrometre-sized amorphous Si (a-Si), feasible using a nano-
mechanical testing system inside a transition electron microscope 
(TEM). Here the choice of a-Si is made, in lieu of crystalline com-
pounds, to avoid complications due to variable slip systems, crys-
tal anisotropy and chemical composition, not to mention that a-Si 
is one of the most important semiconductors and a classic model 
material for the fundamental research of disordered matter11–15. In 

the following, we will demonstrate an unusual T-C asymmetry: the 
σC >> σT norm is reversed, and astonishingly σT exceeds σC by a large 
margin. This surprising observation is also corroborated in atomis-
tic simulations.

Results
T-C asymmetry in submicrometre-sized a-Si. Submicrometre- 
sized a-Si samples, micromachined from deposited a-Si film 
(Supplementary Fig. 1) using a focused ion beam (FIB), were 
tested in both tension and compression. One type of test used the 
same specimen for tension and compression, thus excluding pos-
sible artefacts from comparing different samples. This type of 
tensile-compressive (TC) sample is shown in Fig. 1a. The TC sample 
was first subjected to tensile loading. The gauge section elongated 
with increased loading, and then fractured abruptly (Fig. 1a). After 
the tensile fracture, the lower half of the TC sample remained intact, 
with its flat fracture surface perpendicular to the loading direction 
(Fig. 1b). This part of the sample was then used for compression, 
loaded under a flat diamond punch. In compression, the sample 
showed continuous shape change with homogeneous plastic flow 
after yielding. Supplementary Video 1 shows the real-time tensile 
and compressive deformation processes. The corresponding engi-
neering stress–strain curve is presented in Fig. 1c (effective size, 
d = 145 nm). The flow stress at a 5% plastic strain, ~4.5 GPa for this 
sample, is taken as the yield strength in compression. In tension, 
however, a-Si did not yield at stresses exceeding ~4.5 GPa, until the 
fracture set in at ~6.5 GPa. It is uncertain if this fracture is preceded 
by yielding, with large but highly localized plastic strains that have 
immediately instigated failure. Another possibility is that the sud-
den fracture may be triggered prematurely by minor flaws in the 
specimen, preempting yielding. In any case, under tension, the 
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stress needed to induce yielding is at least ~6.5 GPa, which is desig-
nated as the ‘yield strength’ in tension.

One may wonder if this asymmetry is due to tension-induced 
fertile sites for shear transformations16, causing some softening in 
the subsequent compression. Therefore, we also prepared indepen-
dent tensile and compression samples, that is, separate pillars for 
compression and ‘dog-bone shaped’ samples for tension (Methods). 
For these samples, the measured strengths follow the same trend as 
that in TC samples: tensile excursion ends in fracture while com-
pressive loading initiates homogeneous plastic flow at a much lower 
stress level (more data are documented in Supplementary Fig. 2). 
Figure 1d summarizes the yield strength of a-Si (d = ~110–180 nm) 
under compression (black) versus that under tension (red). We see 
that σT is considerably higher than σC. In other words, we consis-
tently observe that a-Si is much stronger in tension than in com-
pression. Note that a-Si remained fully amorphous after either 
tensile or compressive deformation, as confirmed in post-mortem 
characterizations (Supplementary Fig. 3).

Dynamic tests in the apparent elastic regime provide further 
insight into the T-C asymmetry of a-Si. To achieve high sensitiv-
ity, we used the nano dynamic mechanical analysis technique17,18. 
Stress–displacement curves were obtained by overlapping ten 
loading–unloading cycles with peak stress well below the yield-
ing strength. In the dynamic tensile tests, a-Si exhibits a linear 
elastic behaviour for loading frequencies ranging from 0.5 Hz to 
20 Hz (Fig. 2a). The push-to-pull device itself, in the absence of an 
a-Si sample, also showed perfect linear elasticity (Supplementary 
Fig. 4). By contrast, the compressed a-Si exhibits a mechanical 
hysteresis loop, which expands gradually with increasing load-
ing frequency. The energy dissipated can be assessed using the 
damping factor, which represents the ratio of the loss modulus to 
the storage modulus19. Storage modulus is a metric for the elastic 
energy stored in the sample; loss modulus, on the other hand, is a 
gauge of viscous response and measures the energy dissipated as 
heat20. In compression, the damping factor is found to be 0.009, 
0.044, 0.105, 0.098 and 0.162, corresponding to the average strain 
rate of 0.05 s−1, 0.20 s−1, 0.51 s−1, 0.95 s−1 and 1.82 s−1, respectively. 
Comparing tension versus compression in the nominally elas-
tic regime, apparently a-Si is more elastic and stores more elas-
tic strain energy under tension, whereas it undergoes much more  
anelastic relaxation with energy dissipation in compression. This 
T-C asymmetry in an elastic-dominant regime, that is, anelas-
ticity, is markedly enhanced under compression but suppressed 

under tension, and goes hand in hand with the asymmetry in  
yield strength.

Atomistic simulations of the T-C asymmetry in a-Si. To cor-
roborate the experimentally observed T-C asymmetry and shed 
light on the underlying mechanism, we have carried out molecu-
lar dynamics (MD) simulations using three different empirical 
potentials for a-Si, including the Stillinger–Weber potential21 and 
an environment-dependent interatomic potential22, as well as a 
newly developed machine-learning (ML) interatomic potential23, 
which has been shown to generate atomic structure and proper-
ties close to the experimental measurements24. All these empiri-
cal potentials are consistent in producing the T-C asymmetry. 
For conciseness, in the main text we only show the ML potential 
simulation results, whereas the results of the Stillinger–Weber and 
environment-dependent interatomic potentials are documented in 
the Supplementary Information and Methods with details about 
model preparation and deformation simulation.

We first simulated the uniaxial compression and tension of a-Si, 
in which the applied uniaxial load can be decomposed into shear 
stress τ and normal stress σn on the maximum shear plane (inclined 
~45° to the loading axis), as schematically illustrated in Fig. 3a. 
The compressive yielding required a stress of ~5.5 GPa at a strain 
of ~9%, while the tensile yield strength is 7.2 GPa at a strain of 
13% (Fig. 3b). Such a T-C asymmetry (σC < σT; also Supplementary 
Figs. 5 and 6) is consistent with the experimental results in Fig. 1.  
The uniaxial tension and compression correspond to, respec-
tively, positive (that is, σn > 0) and negative (that is, σn < 0) normal 
stress; the normal stress effect is therefore the key factor respon-
sible for the T-C asymmetry. To provide quantitative information 
about the σn effect and remove the influence of the free surface, we 
consider a deformation model of simple shear concurrent with a 
constant perpendicular normal stress σn (as illustrated in the right 
panel of Fig. 3a). Figure 3c presents the shear stress–strain curves 
for ML a-Si in three σn cases (0 GPa, 3.5 GPa and −3.5 GPa). We 
observe that σn < 0 leads to lowered yield strength, while σn > 0 
leads to increased yield strength, in agreement with the results  
presented earlier.

Next, we employed MD simulations to calculate the shear modu-
lus G of a-Si at 300 K under different σn applied along the z axis. 
G is examined here mainly because it is widely regarded as a key 
baseline property for amorphous materials, and known to be closely 
related to the energy barrier for shear transformation, yielding/flow 
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Fig. 1 | T-C asymmetry in submicrometre-sized a-Si. a, The gauge section of a typical TC a-Si sample before the test (left) and after its brittle fracture in 
the tensile test (right). b, Subsequent compression test on the leftover sample section. c, Engineering stress–strain curves of the TC sample under tension 
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and structural relaxation, as shown, for example, in the cooperative 
shear model developed by Johnson and Samwer25. Figure 3d shows 
the change of Gxz (or Gyz) and Gxy as strain increases. Here the first 
and second subscript of Gij represent the shear direction and normal 
direction of the shear plane, respectively (therefore Gyz is identical 
to Gxz considering the applied σn is along the z axis). Since Gxz and 
Gyz are shear moduli in the plane normal to σn, they determine the 
energy barrier for shear events, under the tension or compression 
along the z axis (resembling the uniaxial deformation illustrated in 
Fig. 3a). In early stages of straining, tensile normal stress (σn > 0) 
increases Gxz (or Gyz), which goes through a maximum value at large 
strains. By contrast, under compressive normal stress (σn < 0), Gxz (or 
Gyz) keeps decreasing from the start. The evolution of Gxy exhibits an 
opposite trend compared with Gxz and Gyz: the tensile normal stress 
leads to lower Gxy, while compressive stress increases Gxy slightly 
first and then reduces it. Therefore, the shear moduli become aniso-
tropic when a normal stress is imposed on a-Si. This anisotropic 
variation/response of shear moduli, in turn, is partly responsible 
for the T-C asymmetry we have observed (more explanations are 
in the Discussions section). The fourfold sp3-bonded tetrahedra 
are the dominant local coordination motifs in a-Si (Supplementary 
Fig. 7). The analysis of orientational radial distribution function26 
(Supplementary Fig. 8) demonstrates that under tension and  
compression, the main structural change for those Si tetrahe-
dra is the bonding anisotropy (as depicted by the elongated and  
shortened tetrahedra in Fig. 3e). As such, the normal-stress- 
sign-dependent response of shear moduli can be mainly attributed 
to this bonding anisotropy.

Besides shear modulus, we also take the coordination num-
ber (CN) change into consideration. An analysis of the fraction 
of a-Si atoms with CN = 4 and CN > 4 (Supplementary Fig. 7)  
shows that most atoms (over 90%) remain tetrahedral during 
deformation. The increase in the fraction of atoms with CN > 4 is 
associated with deformation-induced fertile sites for shear trans-
formations16,27, and the increased CN > 4 sites under compression 
is higher than that under tension, especially in the plastic deforma-
tion regime, suggesting that compressive stress is more inclined 
to facilitate the local transformation from tetrahedral atomic envi-
ronments to higher-coordinated, more fertile sites. Specifically, 
our deformation simulations under athermal quasi-static  

conditions, in which the influence from thermal noise is absent, 
show that the fraction of Si atoms with non-affine squared dis-
placement (D2

min) > 1 × 10−4 Å2 (calculated with a constant strain 
offset of 0.01%) under compression is about twice that under ten-
sion (for example, ~3.1% versus ~1.5% for tension and compression 
at the elastic strain of 0.02). This accounts for the T-C asymmetry 
in terms of anelasticity, since the origin of the nonlinear elasticity 
of amorphous solids rests in the liquid-like non-affine deforma-
tions28. We can also unify the anisotropic shear moduli at different 
normal stresses (in both elastic and plastic regimes) by identifying 
a single structural parameter λij, where i and j are in the set of x, 
y or z directions. See Supplementary Note 1 and Supplementary 
Figs. 9–11 for details.

T-C asymmetry probed via resistance change. To verify the predic-
tion about the CN change using simulations, we further carried out 
in situ coupled mechanical–electrical tests inside a TEM to measure 
the real-time electrical resistances of a-Si under tension and com-
pression. If the shear deformations that locally convert the cova-
lently bonded and semiconducting tetrahedral environments into 
more metallic fertile motifs with CN > 4 (refs. 27,29,30) are suppressed 
in tension but facilitated in compression, the resistivity change is 
expected to be different in tension and compression.

Figure 4a shows the resistance change with time for a typical 
a-Si sample under tensile stress. Because the samples were loaded 
under a constant strain rate, the strain incurred is proportional to 
time under loading. The grey dashed line in Fig. 4a shows the cal-
culated resistance change due to geometry change (Supplementary 
Note 2, Supplementary Figs. 12 and 13 and Supplementary Table 
1 for calculation details). The curve agrees well with the mea-
sured resistance, indicating that the observed resistance increase  
during tensile deformation arises entirely from sample elongation, 
and the resistivity stays constant. For compression, by contrast, 
the grey dashed curve shows the resistance reduction induced 
by the pure geometry change of the a-Si pillar during the com-
pressive flow and does not agree with the measured resistance 
change (Fig. 4b). The difference between them, especially in the 
plastic deformation stage, indicates that the resistivity of a-Si 
decreased under compression. Such an observation is consistent 
with, and lends support to, the mechanism revealed by atomistic 
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simulations (Fig. 3). That is, compressive normal stress serves to  
enhance the propensity for shear transformation events, which 
transform the semiconducting ‘solid-like’ atomic environments 
into more metallic (conductive) and denser ones, decreasing the 
resistivity as a result. We also obtained evidence that shear trans-
formations have indeed increased density (Supplementary Note 3 
and Supplementary Fig. 14). By contrast, tension suppresses shear 
transformations, such that the sample experiences mainly elastic 
deformation, without producing many metallic and denser envi-
ronments. This is manifested by the negligible change in resistivity 
demonstrated in Fig. 4a.

Discussions
Our results, both experimental and computational, have 
shown two major contributing factors to the extraordinary T-C  
asymmetry in a-Si. The first is the changes in the shear moduli, 
that is, stiffening versus weakening, depending on the sign of the 
normal stress. This contribution comes into play even in the nomi-
nally elastic regime, as compression lowers the shear modulus and 
consequently the barrier against non-affine shear transformations 
that produce pronounced anelasticity. The other contribution is 
shear-transformation-induced densification or ‘liquefaction’, which 
converts local packing motifs into denser and more metallic-like 
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environments that are easier to further deform; the electrical resis-
tance change in Fig. 4 provides credence to this mechanism, which 
becomes more prevalent with increasing plastic strain.

Specifically, the shear modulus G signifies the magnitude of the 
activation barrier Q for shear transformation events; the lower the 
G, the higher propensity for shear transformations25, and vice versa. 
The normal-stress-sign-dependent G in a-Si thus goes hand in hand 
with the σn effect on Q, which can be described by the following:

Q = Q0 − ταshearΔϵshearVinital − σnαvolumeΔV (1)

where Q0 is the energy barrier of a shear event at room temperature 
without applied stress, Vinitial is the initial volume of the zone before 
transformation, and Δεshear and ΔV ≡ Vfinal – Vinitial are the local shear 
strain and volume variation of the final configuration with respect 
to the initial configuration, respectively. The dimensionless quanti-
ties αshear and αvolume describe the dependences of Q with respect to 
the shear stress τ and normal stress σn, respectively. If the elastic 
modulus does not depend on stress, αshear and αvolume are simply the 
fraction of shear and dilation (or contraction) of the saddle-point 
configuration with respect to the entire (initial-to-final) transfor-
mation. But if it does, αshear and αvolume would absorb that additional 
effect as well.

For a-Si, the elementary shear transformation event turns a rela-
tively open structure into a contracted one27,30,31. In other words, a 

local cluster of atoms undergoes rearrangement from the relatively 
low-energy configuration to a metastable one, crossing a transition 
state with higher coordination number (Supplementary Fig. 15) 
and a volume reduction, as evidenced by the atomistic calculation 
of Boioli et al.32; with the supercell held fixed, they studied how the 
supercell pressure varies along the transition path: a negative pres-
sure variation means a negative volume change (densification) of 
the transformation zone. As ΔV is negative for a-Si, and αvolume is a 
positive value, the sign of σn makes the difference observed in our 
experiment. Supplementary Fig. 16 schematically shows the resul-
tant Q dependence on strain under tension and compression, remi-
niscent of the trends with the Gxz (or Gyz) evolution in Fig. 3d. The 
consequence is that compression lowers the shear modulus and the 
energy barrier, so the transition state is easier to be crossed, lead-
ing to easier pop-ups of shear transformation events. This instigates 
yielding at a lower stress, followed by strain softening (see the true 
stress–strain curve in Supplementary Fig. 17). By contrast, tension 
makes the shear events more difficult to be activated, such that the 
yield strength can reach a quite high value if flaw-induced prema-
ture fracture does not set in7. All in all, a-Si is stronger under tension 
but more ‘ductile’ under compression.

Importantly, such an extraordinary T-C asymmetry may exist 
in other amorphous materials with similar tetrahedral structures: 
σC < σT is also found in our MD simulations of a-Ge and a-SiO2 
(silica glass; Supplementary Fig. 18). It could be a unique property 
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of open-framework covalently bonded glasses. For the metallic 
glass samples with similar dimensions, on the other hand, their σT 
is slightly lower than σC (Supplementary Fig. 19). This is because, 
unlike the open structure of a-Si (ref. 33), metallic glasses are densely 
packed with CN on the order of 12 due to the non-directional 
metallic bonding34, and their atomic shuffle in shear transfor-
mations causes volume expansion rather than shrinkage at the 
saddle point35. This distinction has a similar origin as the density 
anomaly in the melting of ice, which is lighter than liquid water, 
yet more shear-rigid and less diffusively mobile. The saddle-point 
states of the shear-diffusion transformation zone36 by defini-
tion need to be less shear-rigid and more diffusively mobile than 
the starting state. Such a trend could be generic in tetrahedrally  
coordinated solids37.

T-C asymmetry is critical for a-Si microelectronics or micro-
electromechanical systems devices that serve under T-C cyclic 
loading. The stress-sign-dependent modulus and energy barrier 
we proposed here, together with the strain-stiffening mechanism 
found in cementite, biological materials, elastomers38 and so on, 
may inspire us to invent new materials with novel elastic proper-
ties. For small-scale a-Si devices, an unusually high yield strength 
and large yield strain may be desirable and can be achieved if the 
structural component is designed to be under tensile loading. 
Certainly, the higher tensile stress would eventually cause brittle 
failure. It has been reported that increasing hydrogen content will 
mitigate the brittleness in the tensile stress state39–41. Also, lithiated 
Si (SiLix) is of great application interest as an anode in a Li-ion bat-
tery. At a heavy degree of lithiation, the open-framework struc-
ture of silicon collapses, and the atomic structure is more akin to 
metallic glass. Correspondingly, it was found that a hydrostatic 
compressive stress strengthens the lithiated Si, while a hydro-
static tensile stress promotes its plasticity42. Therefore, it will be 
of interest to experimentally explore the chemical modulation of  
T-C asymmetry in a-Si.

Conclusion
In summary, through quantitative tension and compression testing 
of submicrometre-scale specimens, as well as detailed MD simu-
lations, we have uncovered an extraordinary and pronounced T-C 
asymmetry in a-Si. First, the yield strength in tension is consid-
erably higher than that in compression. The asymmetry in yield 
strength can be explained by the ‘normal stress sign effect’ on the 
shear moduli and thus activation energy barrier for the elemen-
tary shear events—shear transformations, which carry both the 
anelastic and plastic events. Compression lowers the activation bar-
rier of shear transformations to facilitate yielding, whereas tension 
increases the activation barrier energy, rendering the activation of 
shear transformations more difficult and thus requiring a larger 
resolved shear stress. Second, in the nominally elastic regime, a 
hysteresis loop associated with the non-affine deformation appears 
only in compression. Third, the coupled mechanical–electrical tests 
revealing electrical resistivity changes have provided a sensitive 
indicator of the structural change underlying the T-C asymmetry: 
shear transformations have indeed been activated in compression 
but not in tension, switching semiconducting motifs to more metal-
lic, denser, liquid-like ones. The asymmetry shown in this work is 
expected to hold for other materials similar to a-Si. In general, our 
findings provide insights for understanding the intrinsic response 
of open-framework glasses to different stress states. They may also 
be of practical relevance to the utility of small-scale a-Si in micro-
electronics and microelectromechanical systems.
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Methods
Deposition of the a-Si film by plasma-enhanced chemical vapour deposition. 
For simplicity of the submicrometre-sized mechanical samples’ preparation, a-Si 
film was deposited on a <001>-oriented and wedge-shaped single-crystalline 
Si substrate with an ~8 um top width (Supplementary Fig. 1a). An a-Si film was 
prepared using a plasma-enhanced chemical vapour deposition method with a 
radio frequency power of 20 W, at 250 °C substrate temperature, 800 mtorr process 
pressure, pure SiH4 flow rate of 30 sccm and Ar flow rate of 475 sccm. The thickness 
of the a-Si film is about 11 μm. The deposited a-Si film adhered firmly to the 
substrate surface, and no obvious voids were found during the FIB milling process. 
The a-Si samples machined from the a-Si film have a uniform microstructure 
(Supplementary Fig. 1).

Sample preparation for nanomechanical tests. The a-Si pillars and tensile 
samples used in this work were microfabricated from the deposited parent body 
of a-Si film, using FIB (FEI Helios NanoLab 600 dual-beam FIB system) under a 
30 kV accelerating voltage. The beam current of Ga ions sequentially decreased 
from 9.3 nA (coarse cutting) to 1.5 pA (fine polishing). Typical examples of 
the FIB-fabricated a-Si pillar and tensile samples (including the corresponding 
gripper, inset) are shown in Supplementary Fig. 3. The effective size d is defined 
as the nominal diameter measured at the half height of the pillars. The effective 
size d of the tensile samples is calculated by d =

√

A, where A is the measured 
cross-sectional area after brittle fracture.

In situ quantitative mechanical tests in TEM. The a-Si samples were compressed 
or tensioned under uniaxial loading performed by the Hysitron PI95 TEM 
PicoIndenter inside a JEOL JEM 2100F TEM instrument at 200 keV. The 
engineering stress was defined as the ratio of the measured load to the nominal 
cross-sectional area A of specimens, and the engineering strain ε was calculated to 
be the ratio of deformation displacement to the initial height h of pillars or initial 
length l of tensile samples. All in situ mechanical tests were carried out under the 
displacement control mode by changing the loading rate to keep a roughly constant 
strain rate for different samples. The strain rates for all tests were in the range 
1 × 10−3 s−1 to 5 × 10−3 s−1 (quasi-static loading). The tensile and compressive tests 
were performed under comparable electron beam illumination.

Dynamic tensile and compressive tests. To ensure ultrahigh mechanical 
sensitivity in the dynamic tests, the Hysitron NanoIndenter system (Hysitron 
TI950) equipped with a nano dynamic mechanical analysis module, was employed. 
After calibration, the achievable resolutions of the nanoindentation system in 
displacement and in load are ~1 nm and ~1 μN, respectively. The a-Si pillars used 
for dynamic compressive tests were also fabricated by FIB in the same way as 
mentioned above. The tensile samples were lifted out from the prethinned a-Si 
lamellae using a piezoelectric micromanipulator (Kleindiek Nanotechnik) and then 
positioned on a microelectromechanical-systems-based push-to-pull device. The 
tensile sample was aligned carefully perpendicular to the trench edge to secure 
the uniaxial loading condition, and both ends were welded via ion-beam-induced 
Pt deposition. The whole process was performed inside a dual-beam FIB system 
(FEI Helios 600 NanoLab). To avoid fracture or plastic deformation, the nominal 
cyclic stress was set to be far less than the fracture strength or yield strength. To 
ensure the data reproducibility, ten loading cycles were applied for each run of the 
dynamic tests. The spectrum of each load cycle is of a triangular shape, consisting 
of symmetrical loading and unloading portions. It was found that ten loading 
cycles were sufficient to achieve a steady-state dynamic response in our present 
experimental set-up.

MD simulations. The a-Si model containing 8,192 atoms using ML potential 
was generated following a quench protocol similar to that in ref. 24, with sample 
dimensions of 4.5 nm × 4.3 nm × 8.7 nm in the x, y and z directions, respectively. 
Stress–strain curves for uniaxial tension and compression along the z direction 
were obtained from samples with free surface in the x direction and periodic 
boundary conditions in the y and z directions. All MD simulations were 
implemented in Large-scale Atomic/Molecular Massively Parallel Simulator 
(LAMMPS)43. The time step used in all simulations was 1 fs. ML-modelled 
a-Si was produced by heating a supercell of diamond silicon composed of 
8 (x) × 8 (y) × 16 (z) unit cells to 2,800 K into equilibrium liquid. Then it was 
quenched to 300 K with the effective cooling rate of 1 × 1011 K s–1, following the 
similar protocol as that in ref. 24. The a-Si samples using Stillinger–Weber and 
environment-dependent interatomic potentials contain 640,000 atoms and 
were prepared with the cooling rate of 1 × 1012 K s–1. All those quenching and 

equilibrations were conducted in the isothermal-isobaric (NPT) ensemble under 
a Nose–Hoover thermostat with zero external pressure. The periodic boundary 
condition was applied in all three directions.

The deformation of a-Si samples was conducted at 300 K with the applied strain 
rate of 1 × 109 s−1 for the ML potential as well as 1 × 107 s−1 for the Stillinger–Weber 
and environment-dependent interatomic potentials. At different degrees of strain, 
the shear modulus Gij along different orientations (that is, ±xy, ±xz and ±yz, and 
we use the average value of G+ij and G–ij as the value of Gij) of the a-Si models was 
derived from the shear stress–strain curves at small (1.0%) strain. The vibrational 
mean squared displacement (MSDi) of a single atom along the i direction is defined 
as [xi (t) − x̄i]2, where x̄i is the equilibrium (time-averaged) position of the atom 
along the i direction, and the MSD is evaluated on short timescales when the 
MSD is flat with time and thus contains the vibrational but not the diffusional 
contribution44. The calculated MSD was taken by averaging over 100 independent 
runs, all starting from the same configuration but with momenta assigned 
randomly from the appropriate Maxwell–Boltzmann distribution.

Data availability
Source data are provided with this paper. Additional data reported in the 
Supplementary Information are available from the corresponding authors upon 
request.

Code availability
The computer codes are available from the corresponding authors upon  
reasonable request.
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Supplementary Video: In-situ TEM video shows the tension and compression processes 

of a representative a-Si TC sample.   
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Fig. SI-1 ǀ Sample information. (a) Cross-sectional SEM image of the deposited a-Si 

film on a wedge-shaped single-crystalline Si substrate. The thickness of the a-Si film 

(~11 μm) is large enough for fabricating the submicron-sized a-Si pillars using FIB. 

The inset shows the TEM image and electron diffraction pattern of an as-fabricated a-

Si pillar. High-resolution TEM images of the white-boxed zones in the inset in (a), near 

the edge (b) and near the center (c) of the pillar. The diffraction halo and the maze-like 

feature of the phase-contrast in TEM images verify that the FIB-fabricated a-Si sample 

is fully amorphous without any visible crystalline phase.  
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Fig. SI-2 ǀ Typical engineering stress-strain curves of submicron a-Si pillars under 

compression (left) and dog-bone samples under tension (right). 

 

 

 

Fig. SI-3 ǀ (a) TEM characterization of the FIB-fabricated a-Si pillar before (left) and 

after (right) compression. The mushroom-like morphology of the deformed a-Si pillar 
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indicates homogeneous plastic flow without shear-off. The halos in the diffraction 

pattern of the pillar indicate that there is no crystallization throughout the compression. 

(b) A prototypical “dog-bone” shaped tensile sample and its fracture surface. The flat 

fracture surface perpendicular to the tensile direction indicates that the fracture is brittle 

with little plastic deformation. The halos in the electron diffraction pattern of the 

fracture indicate that there is no crystallization. 

 

 

 

Fig. SI-4 ǀ Load-displacement curves obtained by cycling an empty PTP device 

(without any samples) 10 times using the nano dynamic mechanical analysis (nano-

DMA) technique. The dynamic tests were subsequently conducted with load control 

using a ~7 μm flat-end diamond punch. To ensure the data reproducibility, 10 loading 

cycles were applied for each run of the dynamic tests. The inset spectrum of each load 

cycle was of a triangular shape, consisting of symmetrical loading and unloading 

portions. The perfectly overlapped loading and unloading curves at different 

frequencies (0.5 Hz, 2 Hz, 5 Hz, 10 Hz and 20 Hz) indicate that the PTP device itself 

shows perfectly linear elasticity behavior under this condition. 
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Fig. SI-5 ǀ MD-simulated stress-strain curves for uniaxial tension and compression 

along z axis at 300 K, for ML a-Si model with and without free surface in the x direction, 

while y and z directions are under periodic boundary conditions (PBC). 

 

 

 

Fig. SI-6 ǀ MD-simulated stress-strain curves for uniaxial tension and compression 

along z-axis at 300 K for a-Si pillars (with a diameter of 20 nm), using (a) EDIP and (b) 

SW potentials.  
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Fig. SI-7 ǀ Evolutions of CN with tensile and compressive strains. Dependence of the 

fraction of a-Si atoms with CN=4 (a), CN<4 (b) and CN>4 (c) on the tensile (red) and 

compressive (blue) strains, respectively. Note that some CN < 4 atoms are located close 

to the free surface. 

 

 

Fig. SI- 8 ǀ Orientational radial distribution function (RDF) for the orientations parallel 

and perpendicular to z axis for the a-Si samples at the strain of 10% under compression 

& tension, simulated using ML potential (a) and EDIP potential (b). The dashed line 

indicates the first peak position of the undeformed a-Si sample. The orientational RDF 

𝑔(𝑟, 𝜃) is defined as 𝑔(𝑟, 𝜃) =
1

𝜅𝜌𝑁
∑ ∑ [𝛿(𝑟 − 𝑟𝑖𝑗) ∙ 𝛿 (𝜃 − 𝜃𝒛,𝒓𝑖𝑗

)]𝑁
𝑗=1

𝑁
𝑖=1  , 
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where 𝜃𝒛,𝒓𝑖𝑗
= arccos(|�̂�𝑖𝑗 ∙ �̂�|)  is the angle between the z axis and the vector 𝒓𝑖𝑗 , 

𝒓𝑖𝑗  is the vector connecting a central atom i to a neighboring atom j, 𝑟𝑖𝑗 = |𝒓𝑖𝑗|, 𝜌 is 

the number density, N is the total number of atoms in a sample, 𝜅 = 4𝜋𝑟2∆𝑟[cos(𝜃 −

0.5∆𝜃) − cos(𝜃 + 0.5∆𝜃)], and here we use ∆𝜃 = 10°. For clarity, we only contrast 

𝑔(𝑟, 𝜃) curves at two extreme ends, i.e. 𝜃 = 5° (// z axis) and 𝜃 = 85° (⊥ z axis), in 

these plots. The a-Si samples simulated using EDIP potential contain over 1 million 

atoms, about twenty times larger than those simulated using ML potential. The latter 

can only be applied for much smaller samples due to its extremely high computation 

cost; due to the small sample size and associated noise in the data, it is difficult to 

confirm the first peak shift for the orientation perpendicular to z-axis under compression 

versus tension (a). The bigger samples producing smooth curves (see b) are therefore 

useful: the peak shift now becomes readily observable (see the arrow pointing to the 

shifted peak). 

 

Supplementary Note 1:  

In addition to the normal stress sign dependent shear moduli, we consider two 

previously known structural excursions in a-Si under stress/pressure. One is the 

polyamorphic phase transition, which transforms the low-density amorphous (LDA) 

state to the high-density amorphous (HDA) state, as demonstrated in previous studies1,2. 

But this polyamorphism requires an externally applied hydrostatic pressure as high as 

~12-14 GP in experiments and >10 GPa in our MD simulation (Fig. SI-9). Such a 

magnitude is considerably higher than the compressive yield strength observed in our 

study. We can therefore rule out the LDA-HDA transformation as relevant to our T-C 

asymmetry. The other structural change is deformation-induced fertile sites for shear 

transformations, such as the increase of denser fivefold-coordinated liquid-like motifs 

converted from fourfold-coordinated solid-like ones3,4. However, this alone cannot 

explain the T-C asymmetry of a-Si, and especially the softening even at small strains. 

First, as clearly presented in Fig. 3d, the shear moduli have undergone noticeable 
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changes as early as in the nominally elastic regime, where the content of deformation-

created liquid-like regions should be very low. Second, Gxz (or Gyz) can even be 

increased rather than decreased upon straining when σn > 0. Third, the fraction of atoms 

with CN > 4 remains rather limited throughout the deformation (Fig. SI-7). Therefore, 

the normal stress effect observed, especially in the early stage of deformation, cannot 

be accounted for solely by fertile sites created by shear transformations. Instead, two 

main factors are contributing to the T-C asymmetry. One is the above plasticity-induced 

fertile sites (softening), which becomes more important at large normal stress/strain 

(i.e., beyond elastic regime). The other factor is the anisotropic evolution of the shear 

moduli due to the imposed normal stress (see main text), starting from the early stage 

of deformation. With increasing σn > 0 (tension), the modulus initially increases as the 

atomic arrangement evolves, but eventually decreases at large normal stress when 

activated shear transformations take over to convert many tetrahedral solid-like atomic 

environments into liquid-like fertile sites3,5,6. In comparison, at σn < 0 (compression), 

both of these two factors contribute to softening, thus leading to decreasing shear 

moduli with strain in a fast and monotonic manner.  

 

 

Fig. SI-9 ǀ The average atomic volume of ML modeled a-Si as a function of relaxation 

time under various hydrostatic pressure at 300 K. The hydrostatic pressure is increased 

at constant rate to target pressure during the first 100 ps and then kept constant. 

In previous work, we have developed the flexibility volume parameter7,8, 



9 
 

combining mean squared displacement (MSD) and atomic volume, allowing universal 

prediction of G in metallic glass and a-Si at different compositions and cooling history. 

However, for the current case of a-Si under normal stress, G is no longer isotropic, and 

neither is the MSD. For example, as shown in Fig. SI-10a and 10b, MSDz (MSD in z 

direction) is not equal to MSDx or MSDy (MSDx=MSDy) under different normal stress 

in z direction. We therefore modify the previous definition to define an orientational 

flexibility volume parameter 𝜆𝑖𝑗,  

(1 )
=0.5 (MSD +MSD )

(1 )

k
ij i j

j

r






  


            (S1)          

where i, j, k ∈ x, y or z directions, r is the average atomic spacing, 𝜀𝑘 and 𝜀𝑗 are the 

strain along k and j, respectively, after applying a normal stress. As demonstrated in Fig. 

SI-10c (also Fig. SI-11), Gij of a-Si at different normal strains correlates very well with 

the inverse of 𝜆𝑖𝑗 , suggesting that orientational flexibility volume is an effective 

structural parameter to characterize the mechanical property of amorphous materials.  

 

 

Fig. SI-10 ǀ Orientational flexibility volume parameter ij unifying the anisotropic 

shear moduli at different normal stress. The anisotropic MSD for (a) z-direction and 

(b) x or y directions when the ML a-Si model reaches different z-axis normal strains. 

(c) Correlation between the shear moduli Gij and the inverse of the corresponding 

orientational flexibility volume. The straight line serves as a guide to the eye.  
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Fig. SI-11 ǀ A strong correlation is observed between the shear moduli Gij and the 

inverse of the corresponding orientational flexibility volume, for MD-simulated a-Si 

using SW and EDIP potentials. The straight dash line serves as a guide to the eye. 

 

Supplementary Note 2: In-situ coupled mechanical-electrical tests for 

the resistance measurement 

Resistance measurement under tensile strain: 

A-Si tensile sample was transferred to an electrical PTP (E-PTP) device, and both 

ends of the sample were welded on Au electrodes. More details about the E-PTP device 

can be found in reference9. The E-PTE devices matches with the Hysitron PI95 ECR 

TEM holder. The coupled mechanical-electrical test was performed inside TEM (JEOL 

2100F, 200 kV). Firstly, the I-V curve was obtained by sweeping the voltage (V) from 

-0.1 V to 0.1 V and recording the electrical current (I) simultaneously. The linear I-V 

curve indicates the perfect Ohmic contact (Fig.SI-12a), and the resistance can be 

directly calculated with Ohm’s law. Subsequently, a constant voltage of 100 mV was 

applied on the a-Si sample which is loaded via the diamond punch pushing the movable 

end of E-PTP, and meanwhile the current through the sample can be measured. 
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Resistance measurement under compressive strain:  

    The Si wedge with a-Si pillar on its top was glued on a conductive copper sample 

mount using the conductive epoxy. The copper mount is screwed on one end of the ECR 

holder, and the other end of the holder is a conductive tungsten punch used for forming 

the circuit when touching the sample. In order to ensure the Ohmic contact (the linear 

relationship between voltage and current, Fig. SI-12b) and to avoid the localized 

deformation of a-Si induced by contact effect of the tip and pillar, the top of a-Si pillars 

was covered with a Pt cap during FIB fabrication. A constant voltage was applied upon 

the touch of W tip with pillar, and then the corresponding current was measured during 

compression. 

 

 

Fig. SI-12 ǀ I-V curves were obtained by sweeping the voltage (V) from -0.1 V to 0.1 V 

and recording the electrical current (I), for mechanical-electrical coupling tests in 

tension (a) and compression (b). The linear I-V curve indicates perfect Ohmic contact, 

and the resistance can therefore be calculated using Ohm’s law. 

 

Calculation of resistance change caused by geometry change under straining: 

The sample resistance (R) is given by 

                                 /R L S                                (S2) 

where  is the resistivity, L and S are the length and cross-sectional area of the sample, 

respectively. The sample volume V=S×L is expected to be constant during the 
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homogeneous flow. At strain x, the length of a-Si under tension 

                             
) 0(| (1 )strain x L xL                               (S3) 

where L0 is the initial length. As such, the resistance at strain x can be evaluated as 

           
2 2 2 2

( ) ( ) 0 0| ( ( | ) ) / ( (1 ) ) / (1 )strain x strain xR L V L x V R x               (S4) 

where R0 is the initial resistance.  

Table S1 lists the a-Si samples information about their dimensions, initial resistances, 

the calculated and measured resistance changes under tension and compression, 

respectively. 

 

Table S1. Sample dimensions and resistances change of a-Si under tension and compression 

Sample 
Diameter 

(nm) 
Length 
(nm) 

Initial 
Resistance  

(𝐌𝛀) 

Resistance 
(Geometry 

change 
induced) 

(𝐌𝛀) 

 Resistance 
 (at max 
strain) 
 (𝐌𝛀) 

Resistance 
(after unloading) 

(𝐌𝛀) 

Tensile 
sample 188 3800 0.152 0.166 0.164  0.155 

Pillar 200 310 0.342 0.248 0.186  0.253 

 

    The grey dashed line in Fig. 4a (in the main text) shows the resistance calculated 

using Eq. (S4) as a function of time (tensile strain). The curve agrees well with the 

measured resistance, indicating that the observed resistance increase during tensile 

deformation arises entirely from geometry change, and the resistivity stays constant. 

This is no longer the case in the compression test, where resistance decreased from 

the initial 0.342to 0.186 when the compressive strain reached -14.8% (see 

Fig. 4b in the main text). Upon unloading, the resistance of the pillar rose but only back 

to 0.253 after the sample was detached from the tungsten tip. The plastic strain of 

a-Si (measured from snapshots from the in-situ video) is about -5%, and the calculated 

resistance after unloading is 0.308  higher than the measured resistance (0.253 

). Given the resistivity of the deposited Pt cap is three orders of magnitude lower 

than that of the a-Si pillar 10 and that the size of the base beneath the pillar is very large, 
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the measured resistance should mainly come from the a-Si pillar. Besides, we also rule 

out the contribution from the elastic strain filed in the a-Si to the measured resistance 

change in our mechanical-electrical coupling experiment setup (Fig. SI-13).  

 

 

Fig. SI-13 ǀ Electrical resistance measurement of the a-Si base beneath the FIB-

fabricated Au pillar. Soft Au film was deposited on a-Si, and then micromachined using 

FIB into pillar shape to form Ohmic contact with the tungsten tip. During the 

compression of the Au pillar, which has a low resistance that can be ignored compared 

with that of a-Si, the measured resistance stayed almost unchanged. This suggests that 

in our mechanical-electrical coupling experiment setup the elastic strain filed in the a-

Si base has no contribution to the measured resistance change, which mainly comes 

from the geometry and resistivity of a-Si pillar under compression. 

 

Supplementary Note 3: the plasmon energy Ep maps representing the 

(electron) density distributions of a-Si under tension and compression 

In order to study the effect of tensile and compressive deformation on structure 

changes in a-Si, volume plasmon energy Ep maps were collected in a bent a-Si pillar on 

both its tensile side and compression zones11. As mentioned in the main text, the 

transformation from the tetrahedral solid-like (lower-density) state to the denser 
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fivefold liquid-like one is a crucial factor in the plastic deformation of a-Si. Therefore, 

it is important to measure the density difference between the tensioned and compressed 

a-Si for evaluating the structural change under tension and compression. 

We performed electron energy loss spectroscopy (EELS) mapping on a bent a-Si 

pillar with a diameter of ~50 nm (Fig. SI-14a) to obtain the density distributions in the 

tension and compression zones by measuring the volume plasmon energy Ep, which 

was successfully used previously to obtain the mass density of a-Si films12. Based on 

the free-electron assumption, the plasmon energy Ep is given by13:  

                               

2
1/2

*

0

( )e
p

n e
E

m
                             (S5) 

where 𝑛e is the number density of valence electron, ℏ is the reduced Planck’s constant, 

𝑒 is electron charge, 𝑚* is the mass of electron, and 𝜀0 is dielectric constant of the 

vacuum. Ep, which is proportional to the square root of the number density of valence 

electrons (also the number density of Si atoms if we assume the total number of 

electrons in the sample does not change), can be directly obtained from the EELS 

spectrum. The EELS data were acquired in a JEOL JEM-2100F STEM equipped with 

a Gatan Quantum 963 GIF. Standard imaging conditions have an accelerating voltage 

of 200 kV, a 40 μm diameter condenser aperture, and an electron beam probe size of 

0.2 nm. To determine the Ep of a-Si with high precision, we fit with Gaussians both the 

zero-loss peak and the first plasmon peak intensities in the EELS spectrum captured at 

each STEM raster. The two peaks are overlapped, the difference between the central 

energy of each peak is taken to be the energy loss Ep induced by plasmon oscillations. 

To determine the center energy of the zero loss peak and plasmon peak we used the 

method introduced in reference 14. Each map contains 10×10 pixels on a 0.65 nm pitch. 

Repeated measurements at a single point give standard deviations in the Ep value of 15 

meV~80 meV. As shown in Fig. SI-14, the compressively strained side shows much 

higher Ep and therefore larger valence electron density, compared with tension side. 

Furthermore, Ep mapping from the compression side shows larger heterogeneity with 

some local high Ep regions. According to Eq. (S5), we can get
' 2/ ' ( / )e e p pn n E E . The 
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maximum EP measured in the compression side is 19.2 eV, and the average Ep´ 

measured from the tension side is 16.9 eV. The corresponding ne has an increase of 25%. 

This increase is consistent with the conjecture that in local regions the coordination 

number increases from ~4 (solid-like) to ~5 (liquid-like), also a 25% increase. 

 

 

Fig. SI-14 ǀ Quantitative EELS was used to investigate the density difference between 

the compressive side and tensile side of a bent a-Si pillar with the original diameter d = 

~ 50 nm inside TEM. (a) STEM image of the bent a-Si pillar. (b) 2D contour image 

showing the plasmon energy Ep maps on the tension (left) and compression (right) 

zones marked by the white frames in (a). The compression side shows much higher Ep 

and therefore larger electron density, compared with the tension side. Furthermore, Ep 

mapping from the compression side shows larger heterogeneity with some local high 

Ep regions. This indicates that more liquid-like regions form as plasticity carriers under 



16 
 

compression, while the transformation from lower density to higher density is 

suppressed under tension. (c) The typical low-loss EELS spectra of Ep=17 eV (black) 

and Ep=19 eV (red) with the zero-loss peaks overlapped. The inset shows their enlarged 

plasmon peaks with different shapes and positions, and they correspond to the solid-

like and liquid-like regions, respectively. 

 

 

Fig. SI-15 ǀ Average coordination number for initial, saddle and final state of a-Si 

calculated using SW potential. The search of saddle and final states of thermal 

activation events was performed using activation-relaxation technique (ART) package. 

Initial perturbations in ART were introduced by applying random displacement on a 

small group of atoms (an atom and its nearest-neighbors)15,16. The magnitude of the 

displacement was fixed, while the direction was randomly chosen. When the curvature 

of the potential energy landscape was found to overcome the chosen threshold, the 

system was pushed towards the saddle point using the Lanczos algorithm. The saddle 

point is considered to be found when the overall force of the total system is below 0.01 

eV/Å. The corresponding coordination number of centered Si atoms was determined by 

the distance cutoff using the position of first minimum in pair distribution functions.  
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Fig. SI-16 ǀ Schematic illustrating the normal-stress-sign-dependent activation 

barrier Q for shear transformation events. (a) Schematic showing the open network 

structure of the unstrained a-Si. (b) The energy E, as well as volume V 17 (also see Fig. 

SI-15 above), of a-Si in a shear deformation event, from the relatively low energy 

configuration to a metastable sheared configuration, crossing a transition state (saddle-

point configuration) of higher energy and density. (c) Activation energy barrier Q as a 

function of strain  under tension and compression, respectively, showing similar trends 

with the G change in Fig. 3d. 

 

 

Fig. SI-17 ǀ (a) Engineering stress-strain curve of an a-Si pillar with effective size 

d=105 nm. (b) True stress-strain curve of the pillar. The true stress was calculated by 

dividing the deformed pillar’s top area by the applied load. The insets show the 

morphology evolution of the a-Si pillar under compression. 
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Fig. SI-18 ǀ Effects of normal stress (σn in z direction) on the shear moduli Gxz (or Gyz) 

and Gxy of (a) silica using BKS potential18, (b) silica using Tersoff potential and (c) 

amorphous Ge using Tersoff potential.  

 

 

Fig. SI-19 ǀ Yield strength in tension versus compression, for submicron samples of a 

Cu-Zr metallic glass, showing only slight tension-compression asymmetry, with σC a 

little higher than σT.  
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