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Autonomous experiments 
using active learning and AI
Zhichu Ren, Zekun Ren, Zhen Zhang, Tonio Buonassisi & Ju Li

Active learning and automation will not 
easily liberate humans from laboratory 
workflows. Before they can really impact 
materials research, artificial intelligence 
systems will need to be carefully set up to 
ensure their robust operation and their ability 
to deal with both epistemic and stochastic 
errors. As autonomous experiments become 
more widely available, it is essential to 
think about how to embed reproducibility, 
reconfigurability and interoperability in the 
design of autonomous labs.

Materials discovery is a labour-intensive process. Edison famously 
tested thousands of filaments to develop the incandescent light bulb. 
Nowadays, affordable automation is enabling the emergence of a new 
research modality that incorporates robotics and active learning 
algorithms1,2. Constructing fully automated experimental platforms3,4 
is challenging when budget and space are limited, but it is entirely ok to 
begin with a semi-automated workflow, such as with manual transfer of 
sample arrays between instruments. Basic active learning approaches 
using Gaussian process regression and Bayesian optimization and their 
variants can satisfactorily manage many types of process optimization, 
provided that the input–output pairs are reproducible5,6.

Just as raising children takes decades and different kinds of 
lessons, one should not anticipate active-learning-driven experiments 
with a limited knowledge base to be very productive at the outset. The 
process is fragile at the beginning. It takes a lot of handholding and 
communication to teach a toddler to walk, and one should expect 
the same with active learning and artificial intelligence (AI)-driven 
experiments — much guidance is needed, even with a seemingly robust 
automated pipeline.

Addressing epistemic errors
The ability to obtain long-term reproducible datasets is the hallmark 
of a mature robotic platform qualified for carrying out active learning. 
When an experiment is repeated twice and produces varying outcomes, 
the disparity arises from two origins: aleatoric errors and epistemic 
errors. Aleatoric errors stem from stochasticity and are easier to 
handle, because they can be relieved by automation and inferred by 
the Gaussian process noise kernel. On the contrary, epistemic errors 
could wreak havoc on autonomous experiments driven by naive active 
learning algorithms. Essentially, what happens is that we take the 
constancy of some variables for granted, whereas in reality they vary.  

For example, in our robotic platform, for a while we found large varia-
tions in performance of carbon-paper-based samples prepared from 
a simple-looking automated liquid drop-casting process. This issue 
was not resolved until we noticed that the carbon substrate could be 
anisotropic, which means the way we cut it is an important variable 
(more details available in this case study).

One may wonder why reproducibility is particularly critical for 
active learning. Don't experimentalists doing manual experiments 
also face this issue? The answer is yes, but it is much relieved by the 
vast human experience and fluid intelligence. Imagine a student who 
discovers a synthesis recipe and repeats it 10 times, obtaining very 
exciting results 2 out of 10 times. What will the student do? The error 
bar is too big to publish the findings, so the student and the advisor will 
discuss, tweak the setup in many ways and eventually figure out the 
reason behind the statistical anomaly (which could be, for example, 
the extraneous moisture content of an intermediate reaction product).

Statistical anomalies stem from our inability to identify all the 
underlying variables that contribute to the result and, if they are ignored 
rather than investigated and understood, lead to irreproducibility. 
A Nature survey revealed that the primary reason for irreproducibility 
in the literature is selective reporting7. If one recklessly launches an 
active learning project without identifying the source of the error 
bars, the effort could waste a lot of time and money. The algorithm will 
mistakenly treat spurious noises as signals, consequently giving poor 
suggestions, as ‘garbage in, garbage out’.

The flip side of the coin is that epistemic errors, if carefully 
debugged, can lead to wondrous scientific discoveries (for example, 
penicillin was discovered by failing to grow bacterial cultures with 
unintended fungal contamination). Humans are very good at turning 
around ‘experimental failures’, as we have exceptional causal inference 
capabilities (“once you eliminate the impossible, whatever remains, no 
matter how improbable, must be the truth”, to quote Sherlock Holmes). 
This is not the case with basic active-learning methods, because they 
take an over-simplified view of the world and do not have much prior 
physical knowledge.

Unlike conventional machine learning techniques, large language 
models such as ChatGPT can be used to generate well-posed scientific 
hypotheses8. In the future, it will be possible to use broader and deeper 
laboratory automation to experimentally test these machine-generated 
hypotheses, which may be able to explain epistemic errors. For example,  
a synthetic procedure can be automatically repeated inside various 
controlled atmospheric chambers to understand the dependence 
on the partial pressure of different gases. As automated experiments 
start to incorporate computer vision, which can already outperform 
human vision in certain tasks, the ability to track laboratory conditions 
(such as moisture, radiation background, precursor materials texture 
and non-uniformity) much more meticulously than humans, and a 
large prior knowledge base about how the world works materially8, 
it is only a matter of time before AI systems with multi-modal sensors 
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real successes so far1–3. At academic institutions, the budget for build-
ing each lab is limited to a few million US dollars or less. This means 
one-trick or few-trick ponies, ill-prepared for the identification of 
epistemic errors and rapid changes of course in the workflow. Whereas 
human researchers suspecting something unusual can leave their 
comfort zone and ask colleagues to do complementary measure-
ments just by walking between different facilities on campus, today’s 
autonomous labs, which still tend to be too small and subcritical, do 
not have this flexibility yet.

To overcome this issue, autonomous labs need to work together. 
We need to allow AI agents to communicate with each other through 
universal sample transfer and data-transfer procedures. This would 
allow Autonomous Lab A to send physical samples to Autonomous 
Lab B, with the associated meta-data. Standardized capsules for trans-
ferring liquid, powder, gel, pellet and single-crystal materials need to 
be developed, and they need to be compatible with easy weighing, 
sizing, and optical and chemical characterization techniques, plus 
they need to prevent contamination. We will also need buildings and 
infrastructure designed specifically for flexible automation. Entirely 
new architectures can be constructed for robot and human researchers 
to work together.

The era of AI has approached. To fully release the potential of 
AI in experimental research and materials discovery, it is crucial to 
equip silicon-based intelligence with ‘hands’ (materials synthesis, 
equipment self-assembly/disassembly and sample transfer) and 
‘eyes’ (materials characterization and multi-modal sensing). Building 
a robust AI-to-real-world feedback system is certainly not an easy 
job. But as AI labs will be set up and interconnected properly, and the 
know-how — crystallized in standardized interfaces and hardware 
modules — will be broadly shared worldwide, powerful AI-enabled 
flexible and robust experimental workflows could revolutionize 
materials research.
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can figure out the plausible causes of epistemic errors and debug the 
workflow experimentally. Large language models plus reinforcement 
learning with generalized sensorimotor functions and the ‘new cyber-
netics’ described below may be the next stage of the lab-automation 
revolution.

Towards interconnected AI-driven labs
As AI systems become more complex and powerful, budgetary and 
space constraints require the use of modular cloud lab facilities9 
(Fig. 1), so that the equipment chain can be ‘recompiled’ and relinked 
and the interoperability between multiple autonomous labs can be 
ensured. A network of AI systems, both experimental and theoretical, is 
needed to achieve partition of labour, an economy of scale, and checks 
and balances (as in round-robin tests with physical sample transfer and 
adversarial peer reviews8).

Today’s commercial equipment for materials synthesis, charac-
terization and property testing is designed with just human users in 
mind. In the future, an autonomous lab would require every piece of 
equipment to have two interfaces, a main interface for AI systems on 
the Internet of Things and a human access interface. Each apparatus 
would operate similarly to a subroutine in a software library, with physi-
cal sample input/output specifications rigorously defined. Flexible 
chains of modular equipment would be designed to be reconfigured 
(disassembled and reassembled) quickly and automatically. Note that 
reconfigurability does not always require apparatuses to be physically 
moved to form an assembly line, as wheeled robots and small flying 
drones could be used to transfer samples between modules.

Although autonomous materials discovery labs have been envi-
sioned and developed since the 1950s, there have been relatively few 
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Fig. 1 | Future outlook: autonomous labs connected in an AI network. With 
the increasing capabilities of artificial intelligence (AI) systems and limitations in 
budget and physical space, the adoption of modular cloud laboratory facilities 
could be favourable. These could be implemented on a large scale in wastelands. 
These facilities allow for the flexible reconfiguration and interconnection of 
equipment chains, ensuring interoperability across multiple autonomous 
laboratories. Digit flow and mass flow are the two most critical streams: multiple 
AI agents interchange information via a unified network, while in the physical 
realm, numerous wheeled robots and drones function as the propellant for 
the transit of physical samples. Researchers from any corner of the globe can 
remotely access the system, and their commands, given in human language, may 
be parsed into subtasks and distributed by large language models10.
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