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ABSTRACT: Memristive technology has been rapidly emerg-
ing as a potential alternative to traditional CMOS technology,
which is facing fundamental limitations in its development.
Since oxide-based resistive switches were demonstrated as
memristors in 2008, memristive devices have garnered
significant attention due to their biomimetic memory proper-
ties, which promise to significantly improve power consumption
in computing applications. Here, we provide a comprehensive
overview of recent advances in memristive technology,
including memristive devices, theory, algorithms, architectures,
and systems. In addition, we discuss research directions for
various applications of memristive technology including
hardware accelerators for artificial intelligence, in-sensor computing, and probabilistic computing. Finally, we provide a
forward-looking perspective on the future of memristive technology, outlining the challenges and opportunities for further
research and innovation in this field. By providing an up-to-date overview of the state-of-the-art in memristive technology, this
review aims to inform and inspire further research in this field.
KEYWORDS: memristor, compute-in-memory, resistive switching memory, ferroelectric memory, phase change memory,
ion-intercalation resistors, memtransistors, neuromorphic computing, in-sensor computing

1. INTRODUCTION
Over the past 70 years, Complementary Metal-Oxide Semi-
conductor (CMOS) technology has advanced rapidly, making it
one of the most influential technologies in human history.
Exponential scaling of the switching channel in CMOS devices,
followed by Moore’s law, is one of the key enablers for the
advancement.1 However, CMOS scaling is approaching
fundamental physical limits, which has necessitated the need
to look for alternative switching devices to continue improving
computational performance.2−4 An ionic-based resistive switch-
ing device (i.e., a memristor) is a leading candidate in this
context.5−8 Due to its programmable analog memory effect,
which resembles the function of biological synapses in the
human brain, memristors have been regarded as a building block
of neuromorphic (i.e., brain-like) electronics. This technology

has the potential not only to provide biomimetic devices that
support human-like data processing but also for influencing even
the most basic forms of electronics (Figure 1).
A memristor can be defined as a passive component that

remembers the amount of charge that has passed through it.9,10

In addition to redox-based resistive switching memory (also
known as resistive random-access memory�ReRAM), which
was regarded as the memristor, various types of devices,
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Figure 1. Development of memristive technology. Various memristive devices have been proposed including redox resistive switchingmemory,
phase change memory, ferroelectric memory, ion-intercalation memory, and memtransistors. Four different categories of the research areas
using such devices are presented in this review.

Figure 2. Artificial neural network (ANN) and hardware implementation using memristive devices of matrix-vector multiplication. (a) Single-
layered perceptron model and (b) corresponding memristive crossbar array. Input, weight, and output values in ANN correspond to input
voltage, conductance of memristive devices, and output current, respectively.
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including two-terminal devices (i.e., phase-change memory and
magnetic tunnel junctions) and three-terminal devices (i.e.,
ferroelectric transistors, ion-intercalation resistors, and mem-
transistors), have been proposed to show a “memristive”
property.6 Thus, in this review, a memristive device refers to
any device whose resistance is programmable under voltage or
current inputs and is retained without a power supply. One of
the key features of memristive devices is that they can be used as
computing units in the form of crossbar arrays. By Ohm’s law
and Kirchhoff’s law, a crossbar array can naturally perform
matrix-vector multiplication (MVM) (Figure 2),11,12 which is
also called compute-in-memory (CIM). While the conventional
von Neumann computing architecture suffers from the high
energy costs of data transmission between processing units and
memory units, CIM can significantly improve the computing
power efficiency through massively parallel processing. Since
data processing based on artificial neural networks for artificial
intelligence (AI) requires numerous MVM, CIM has received
great attention for AI accelerator development. Furthermore,
memristive devices can be used for implementing alternative
computing paradigms such as spiking neural networks, in-sensor
computing, and probabilistic computing.

The purpose of this review is to comprehensively highlight
recent advances in memristive technology and to discuss
opportunities and challenges for future research. We first discuss
recent advances in various types of memristive devices based on
material properties before then focusing on studies of memristor
theory. We also present the development of memristive
algorithms, architectures, and systems, in addition to emerging
memristive applications and AI accelerators. Finally, forward-
looking perspectives on the future prospects of memristive
technologies are presented.

2. MEMRISTIVE BEHAVIORS OF VARIOUS MATERIALS
AND DEVICES

2.1. Material Design of Redox-Based Resistive Switching
Memory. One of the most prominent examples for the important
synergy between nanoionics and nanoelectronics are memristive
devices. Three different research areas, namely resistive memories,13,14

(nano)ionic-based devices,15 and the memristor theory10,16 were
established in early 1970s and 1980s, that developed in parallel and
finally merged in 2008, building the fundament for memristive
technologies. In 2008, Strukov et al.9 have proposed resistive switching
memories as the missing fourth circuit element, the memristor, as
theoretically proposed by L. Chua in 1970, thus initiating the fusion of

Figure 3. Memristive devices classified in accordance with different physical phenomena underlying their operational principle.

Figure 4. Different types of bipolar switching, depending on the predominant mobile species. (a) Electrochemical metallization memory and
(b) valence change memory. The main difference is that for the establishment of high resistive and low resistive states in VCM devices, a
formation and modulation of a Schottky barrier is essential. Reprinted with permission under a Creative Commons CC BY License from ref 31.
Copyright 2022 John Wiley & Sons.
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these three research fields. The modern developments in memristive
technologies cover a variety of applications beyond memories such as
sensors, nanoactuators, selector devices, memristive transistors,
artificial neurons, and synapsis for brain inspired computing. A simple
classification based on the physical processes responsible for the
resistive switching is presented in Figure 3.

Among the most important categories of resistive switches are the
electrochemical metallization cells (ECM, also known as conductive
bridge RAM�CBRAM or programmable metallization cells),17

valence change mechanism memories (VCM, also known as metal
oxide resistive memory�OxRAM),18−20 and thermochemical mech-
anism (TCM)21 devices. Recent review papers focus on details on their
basic operation principle, memory and computing related applications.5

All types of resistive switches share a simple two-terminal MIM-
structure where the resistance of the insulator can be tuned between at
least two different resistance levels (a high resistive state, HRS, and a
low resistive state, LRS). Many devices allow intermediate resistance
levels (multilevel switching) or analogue switching, resulting in storing
multiple bits in a single memory cell. A schematic presentation of
filamentary switching ECM and VCM devices is shown in Figure 4.
Redox reactions as nanoionic signature of the resistance transition have
been widely accepted.22,23

Adapting memristive devices for different applications and
controlling the functionalities are challenging but essential tasks of
the current research in this field. In many cases, the function can be
induced by using different pulse schemes or different amplitudes and/
ormagnitudes of the external stimuli. However, a more important but at
the same time more challenging task is using an approach based on
materials design. This approach requires a deep understanding of the
relation among material properties, the physicochemical interactions
and processes within the device, and the resulting charge dynamics and
functionalities. Despite the apparent simplicity in structure and
materials, memristive cells are complex nanoscale systems where
mechanical, chemical, and electrochemical interactions are present, as
shown in Figure 5.

The main electrochemical processes are redox reactions at the
interfaces and ionic motion (diffusion or migration) within the
switching film. However, chemical interactions at the interfaces and
with the molecules from local environment often play important role in
determining factors such as variability, state stability endurance, and
retention. For example, it was recently found that the capping layer is
significantly influencing the device performance, despite it is not
directly participating into the switching process.24 Moreover, not only
the assembly of materials is important, but also their thicknesses should
be adapted and coordinated. In macroscopic systems, electrolytes are

considered as an infinite source of ions and adding or removing some
(e.g., due to reactions) is not changing the properties of the system. In
nanoscale electrochemical cells, this is typically not the case. Adding or
removing charges (ions and/or electrons) can have significant impact
on the physicochemical properties and, thus, on the switching behavior
and functionalities. Thus, the thicknesses of the different layers in one
device should be carefully selected. In addition, extracting or adding
ions, can change the kinetics from field accelerated to classical diffusion
driven transport.25

Speaking on materials design, an essential factor is the purity of the
used materials, and often impurities may unexpectedly play the role of
doping. In many cases, the level of impurities is not considered where in
the same time levels of ppm can significantly change the transport,
switching kinetics and functionalities.25 Such impurities can be
immobile, being part of the initial material, but they can be also
introduced on a later stage due to incorporation of protons (for example
introduced during preparation or incorporated from local environ-
ment) or ions from the electrochemically active electrodes.25,26

Impurities and doping are important considering not only the switching
film but as well electrodes. It has been also demonstrated that
introducing other components in the metallic films (alloying) can be
essential for reaching optimal performance.27

Specifically, the complex defect structure of oxide functional layers
that leads to the formation of the conducting filament has been recently
studied. While the important role of oxygen vacancies has been
discussed extensively in the literature including quantization
effects,28−31 the interplay of (oxygen) point defects with two-
dimensional defects like grain and phase boundaries has been mostly
neglected. In molecular beam epitaxy (MBE) grown HfO2 dielectric
layers deposited onto TiN bottom electrodes, it is possible to enforce
the growth of threading grain boundaries that all have an equivalent
crystallographic orientation.32 Using such model structures, the
influence of grain boundaries could be directly studied. Surprisingly,
different sets of grain boundaries lead to markedly different forming
voltages, Vf. Low-symmetry grain boundaries are connected to large Vf
with a broad probability distribution, while high-symmetry grain
boundaries show forming free behavior with a sharp distribution of
values (Figure 6). It turns out that the symmetric grain boundary
attracts to larger extent oxygen vacancies which, in turn, lead to a higher
concentration of electronic states in the band gap of HfO2 close to the
Fermi level. Therefore, this particular set of grain boundaries is an ideal
precursor for the formation of a conductive filament.33 The
understanding and control of complex defects and their interaction is
a key tomanipulate conductive filament towardmultiple resistive states.
While HfOx is one of the mostly usedmaterials in VCM, other materials

Figure 5. Structure of a memristive device and the processes and possible interactions between different components of the cell.
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like Y2O3 with a high amount of intrinsic oxygen vacancies might be
even more suited to control the transition between a large number of
resistive states.34,35

Two-dimensional (2D) layered materials have also been introduced
as switching medium in memristors.36−39 The best resistive switching
performance for memory and neuromorphic applications has been
obtained in multilayer hexagonal boron nitride (h-BN) produced using
chemical vapor deposition (CVD).40−42 The reasons are (i) h-BN is an
insulator with a band gap ∼6 eV, meaning that it can block current in
HRS and reduce energy consumption;40 and (ii) CVD provides the
right amounts of native defects that enable stable RS.43,44 A recent study
reported crossbar arrays of small (<0.053 μm2) h-BN memristors with
high endurance (>5 × 106 cycles), and low energy consumption per
state transition (∼1.41 pJ).42 It has been studied that the switching
occurs by metal penetration from the electrodes40,41 as in ECM. Native
defects in CVD h-BN, as in VCM, also facilitate the formation of the
filament (i.e., lower the energy-to-breakdown) and enable resistive
switching.41 The difference is that in CVD h-BN the native defects are
surrounded by extremely stable 2D layered material.41 This limits the
number of atoms that are involved in the switching and avoids lateral
propagation of the filament, which should have positive effects to
reduce variability and increase endurance.44,45 The fact that the resistive
switching in CVD h-BN is oxygen-free,41 should also prevent filament
self-disruption, which should enhance the retention time. The problem
of most studies in the field of 2Dmaterial-based memristors is that they
report the performance of few (<5) large devices (>1 μm2), while the
community should be focusing on presenting data collected in multiple
(>100) small devices (<0.1 μm2), if possible arranged in a crossbar
structure.46,47

Despite the impressive progress made in the field, materials design of
memristive devices has not reached its full potential and fundamental
studies on the relation between materials, processes, and functionalities
are essential for the further progress in tuning and controlling
memristive functionalities.

2.2. Optical Memory and Photonic Tensor Core Based on
Phase Change Materials. Phase change materials (PCM) have long
been employed as a storage medium for optical data storage such as
compact disks since the 1980s due to their pronounced change in

dielectric function upon phase switching. Some families of PCM
include chalcogenide glasses like GeSbTe and certain metal oxides like
VO2. The amorphous phase and crystalline phases of PCM exhibit long-
range disorder and long-range order, respectively.48 To switch from the
crystalline state to the amorphous state, a heat pulse is applied to PCM
to elevate the temperature above themelting temperature, followed by a
rapid quenching (cooling rate higher than 109 K/s) to cool down the
material. To crystallize PCM, a heat pulse with intermediate power is
applied to heat up the material above the glass transition temperature,
but not necessarily higher than the melting temperature. The
prominent properties of PCM data storage include long data retention
at room temperature (more than hundreds of years),48−50 low
switching energy (hundreds of pico-Joule to few nano-Joule), fast
switching dynamics at nanosecond scale, and many distinguishable
stable intermediate states (tens of states).

Microscale and nanoscale integrated optical memory has been a
growing field in the past decade. As an emerging field, it is not surprising
that this field creates several different names for different devices,
depending on their properties and functionalities. Here, these emerging
devices are categorized into three groups: optical memristor,
optomemristor, and electro-optic memristor (Figure 7a). Optical
memristors are optical devices that can store multilevel data in the
nonvolatile physical states of materials similar to electrical memristors.
But optical memristors read out data from the optical domain, requiring
different physical states to have different optical properties.
Optomemristors are essentially electrical memristors, whose switching
dynamics and electrical response can be controlled optically. Electro-
optic memristors are simultaneously optical and electrical data storage
devices. This property is called “dual electrical-optical functionality”,
meaning electro-optic memristors can be programmed optically and
readout electrically and vice versa.

For the PCM optical memristor, data are stored either in the
absorption coefficient or the refractive index of PCM. In the first type,
the amplitude of incoming light is modulated upon phase switching in
conventional PCMs like Ge2Sb2Te5 (GST) and AgInSbTe (AIST). In
the second type, the phase of incoming light is modulated in low-loss
PCMs like Sb2S3

51 and Sb2Se3.
52 The change in absorption coefficient

and refractive index of PCM upon phase switching can exceed unity,
which is several orders higher than other mechanisms for nonvolatile
optical memories. A simple PCM optical memristor can be constructed
with thin film deposition of PCM on waveguide for interaction with the
evanescent field of waveguide mode.53,54 In the case of devices based on
GST, the amorphous phase of GST has a lower extinction coefficient,
resulting in weak attenuation of light. For the crystalline phase, a higher
extinction coefficient leads to a strong attenuation of light. Therefore,
by switching between amorphous and crystalline states, amplitude
modulation can be achieved. Further, by varying the fraction of
amorphous to crystalline phase, multiple intermediate transmission
states or multiple memory levels can be achieved.53,55 All-optical
programming is adopted in PCMoptical memristors; this effectively is a
direct photonic analogue of electrical memristors, modulating trans-
mission of light via absorption. The optical programming pulse is
absorbed by the PCM thin film, resulting in heating of the thin film. By
variation of the power and shape of such programming pulses, both
amorphization and recrystallization can be achieved. Further by varying
the power of programming pulses, multiple memory levels can be
achieved. To date, a maximum of 5 bits in PCM optical memristor has
been reported.55 Using the all-optical programming approach to
reconfigure integrated photonic circuits with PCMmemory devices, in-
memory matrix computation using photonic synapses and all-optical
synaptic neural network have been demonstrated.56−59 Besides the all-
optical programming approach, there has been an increasing interest in
the electrically controlled programming approach due to the rise in
popularity of low-loss PCM for phase modulation. This has until
recently been dominated by microheater-based systems. Unlike all
optical approaches, microheater-based approaches are power-hungry
due to large-area heating and efforts have been made to reduce the
programming energy by optimizing microheater designs.60−62

Recently, the photonic tensor core for parallelized in-memory MVM
is a significant advance in PCM photonics.63,64 As shown in Figure 7b,

Figure 6. Cross-sectional high-angle annular dark-field (HAADF)
scanning transmission electron microscopy (STEM) image of a
metal−insulator−metal stack with (a) (010) and (b) (111 ̅) textured
HfO2. Scale bar is 2 nm. The TiN-HfO2 interface is indicated by a
dashed line. The X-ray diffraction (XRD) pattern reveals that a
change in the growth temperature and rf-power for HfO2 results in
(d) (111 ̅) (purple), and (e) (020) (pink) orientation. (c) Devices
with (010) textured HfO2 (pink) have an increased average forming
voltage of V̅f = −5.3 V compared to devices with (111̅) HfO2 having
V̅f = −1.9 V as shown by the cumulative distribution function
measured from 50 30 × 30 μm2 devices. Reprinted with permission
under a Creative Commons CC BY License from ref 33. Copyright
2022 John Wiley & Sons.
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Figure 7. (a) Three categories of microscale and nanoscale integrated optical memory. (i) Optical memristor. (ii) Optomemristor. (iii) Electro-
optic memristor. (b) A photonic tensor core using PCM optical memristors for parallelized in-memory matrix-vector multiplication.
Wavelength division multiplexing is achieved by integrating a Si3N4 microcomb. Reprinted with permission from ref 64. Copyright 2021
Springer Nature. (c) An optomemristor enabled by Pt/GeSe3/Ag stack. This device is essentially an electrical memristor with its hysteresis
controlled by optical illumination. Reprinted with permission under a Creative Commons CCBY License from ref 65. Copyright 2022 Springer
Nature. (d) An electro-optic memristor formed by integrating plasmonic nanogap with tapered dielectric waveguide. The electro-optic
memristor features dual electrical-optical functionality, meaning the device can be programmed optically and read out electrically and vice
versa. Reprinted with permission under a Creative Commons CC BY License from ref 66. Copyright 2023 American Association for the
Advancement of Science.

ACS Nano www.acsnano.org Review

https://doi.org/10.1021/acsnano.3c03505
ACS Nano 2023, 17, 11994−12039

11999

https://pubs.acs.org/doi/10.1021/acsnano.3c03505?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.3c03505?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.3c03505?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.3c03505?fig=fig7&ref=pdf
www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.3c03505?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


by designing an all-optical integrated photonic circuit with spatially
distributed PCM photonic memories and layout architecture analogous
to electronic crossbar arrays, the photonic tensor core can perform
parallel MVM using wavelength division multiplexing. The huge
bandwidth provided by wavelength division multiplexing and fast
photonic processing renders the photonic tensor core with ultrahigh
computation speed (more than one trillion operations per second) and
density (more than one trillion operations per mm2) for convolutional
processing, which forms the backbone of modern artificial intelligence
algorithms. An electro-optic version of photonic tensor core is also
developed to reduce the complexity of programming PCMmemories.63

Other major advances in PCM photonics include optomemristor and
electro-optic memristors, which link and synergize the optical and
electrical properties of PCM. PCM optomemristor shows memristor
functionalities that cannot be realized solely in the electrical domain but
requires control from the optical domain. A PCM optomemristor
formed by Pt/GeSe3/Ag stack65 was recently reported with
optoelectronic properties (Figure 7c). This device is essentially a
redox type memristor, where a conductive channel is formed in the
GeSe3 between the two electrodes, but such resistive switching can be
optically controlled. Optical illumination causes the shift of resistive
switching voltage toward a smaller value. Hence, the device can be
optically controlled to switch at a lower or higher voltage relative to its
intrinsic switching voltage. Using this property presented in the Pt/
GeSe3/Ag optomemristor, i.e., resistive switching controlled by
illumination, the emulation of multifactor neuromorphic computation
is demonstrated as an example of reinforcement learning in hardware.
Toward electro-optic memristors featuring dual electrical-optical
functionality, meaning the device can be programmed optically and
readout electrically and vice versa, a plasmonic nanogap enhanced
PCM device has been demonstrated.66,67 As shown in Figure 7d, a
plasmonic nanogap is integrated with a tapered dielectric waveguide to
achieve efficient dielectric waveguide to plasmonic mode conversion.
The PCM sits at the center of the nanogap to bridge the two tapered

electrodes and form a conductive path. Since PCMs are both electrically
and optically active, this device can be switched and read out flexibly in
both the electrical and optical domain, offering another dimension for
on-chip addressing and control of PCM memories.

Moving forward to practical applications, the challenges of PCM
optical memory devices include limited endurance due to phase
segregation, long-term stability at elevated temperature, ultrafast
programming, and integration with CMOS electronics. Phase
segregation can be eliminated by using single-element PCM such as
Te68 or Sb.69−71 However, the data retention time in Te or Sb -based
optical memory should be improved to achieve nonvolatility. Long-
term stability is limited by the typically low crystallization temperature
of PCM, which can be enhanced by doping PCMs with high melting
point elements such as Ge.72 Achieving ultrafast programming speeds
up to GHz and integration with CMOS electronics remain some of the
most important daunting challenges in PCM material discovery.

2.3. Memristive Behavior of Ferroelectric Transistors and
Arrays Based on Hafnia. Various types of materials such as
perovskites, 2D materials, polymers, and fluorite oxides have been
found to have ferroelectricity and studied for next-generation memory
devices.73−77 The memory effect of the ferroelectric materials is
attributed to the switching of electric dipole alignments between an
upward and downward direction, driven by electric field. Ferroelectric
memories include ferroelectric random-access memory (FeRAM),
ferroelectric tunnel junction (FTJ), and ferroelectric transistors. Similar
to DRAM, FeRAM has a one transistor-one capacitor (1T-1C)
structure and uses a ferroelectric capacitor to store charges, but the
memory states determined by polarization switching of ferroelectric
layer is nonvolatile. However, destructive readout process and large
footprint are critical drawbacks of FeRAMs. In FTJs, ultrathin
ferroelectric materials are sandwiched with two electrodes, which act
as a tunneling barrier. Polarization switching induces resistive switching
by changing the barrier height for tunneling. In ferroelectric transistors,
the ferroelectric layer is used as a gate-insulating layer.78 Polarization

Figure 8. (a) Schematic illustration of conductance modulation mechanism in ferroelectric transistors. Reprinted with permission from ref 82.
Copyright 2019 American Chemical Society. Conductance modulation characteristics of ferroelectric transistors using (b) identical and (c)
incremental pulse schemes. (d) Classification accuracy of neural network based on the ferroelectric transistor and ideal synapses. Neural
networks based on ferroelectric transistors showed higher classification accuracy when an incremental pulse scheme is used, compared to an
identical pulse scheme. Reprinted with permission from ref 86. Copyright 2021 AIP Publishing LLC. (e) Optical image of ferroelectric synaptic
transistor array (left). Optical image and schematic illustration of the ferroelectric transistor in the array (right). (f) Column-wise parallel
weight update characteristics of the ferroelectric synaptic transistor array. The weight update was done simultaneously, but only the selected
cells (C01 and C03) were programmed, while the unselected cells (C00 and C02) were kept in their original state. (g) Classification accuracy of
neural networks based on ferroelectric transistor array and ideal synapse array. Reprinted with permission under a Creative Commons CC BY
License from ref 91. Copyright 2022 American Association for the Advancement of Science.

ACS Nano www.acsnano.org Review

https://doi.org/10.1021/acsnano.3c03505
ACS Nano 2023, 17, 11994−12039

12000

https://pubs.acs.org/doi/10.1021/acsnano.3c03505?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.3c03505?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.3c03505?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.3c03505?fig=fig8&ref=pdf
www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.3c03505?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


charge in the ferroelectric layer modulates the channel conductivity,
resulting in changing threshold voltage (Vt) of the transistor.

Recently, memristive devices using ferroelectricity and their array
structure have been actively studied to achieve high-performance, high-
density neural networks.79−82 Using partial polarization characteristics
of ferroelectric gate insulators, precise control of carriers inside the
channel layer can be achieved, which can lead to conductance
modulation in the channel layer.82−86 Among diverse ferroelectric
materials, hafnia-based ferroelectric materials have been widely
investigated for neuromorphic applications due to their CMOS
compatibility, fast switching speeds, and high scalability.87−91 At the
erased state (i.e., downward polarization), the electrons inside the
channel are depleted, which leads to low channel conductance (Figure
8a).79,82 When a programming pulse with increasing amplitude is
applied to the gate, the direction of polarization gradually changes to an
upward direction and electrons are accumulated at the interface
between the ferroelectric layer and the channel layer. This gradual
switching of polarization under incremental pulses results in a gradual
increase in channel conductance.82,86 Thus, voltage pulses with
incremental pulse amplitude or width are usually used to achieve linear
and symmetric conductance change in ferroelectric transistors.82,92

With incremental pulse schemes, classification accuracy as high as 91%
is expected for handwritten digits, which is similar to that of ideal
synapses.82 Although the incremental voltage scheme can result in
highly linear and symmetric conductance modulation, the conductance

of the ferroelectric transistor should be determined prior to
conductance modulation. Thus, incremental pulse schemes lead to
longer training time and higher energy consumption than identical
pulse schemes.86 However, when identical pulse schemes are used for
ferroelectric transistors, abrupt conductance changes are reported
(Figure 8b, c).86 Also, it was confirmed that the accuracy of the neural
network is significantly degraded with identical pulse schemes
compared to that with incremental pulse schemes86 (Figure 8d).
Thus, it is a challenge to develop a ferroelectric transistor compatible
with an identical pulse scheme or operation method, which can
decrease the training time and energy consumption.

The array structure for ferroelectric synaptic transistors and its
operation method, which can decrease the training time, was
demonstrated by Kim et al.91 Synaptic transistor array was fabricated
using a low-temperature (400 °C) process by integrating a ferroelectric
thin film transistor with an oxide semiconductor channel, InZnOx, and
ferroelectric gate insulator, HfZrOx (Figure 8e). In this work, the row-
and column-wise parallel programming method, in which the
ferroelectric transistor in the same row and column can be programmed
simultaneously, was proposed to decrease the training time of
ferroelectric transistor arrays. Using the optimized parallel program-
ming method, the conductance of the selected cell can be selectively
and linearly modulated (Figure 8f). Also, the conductance of unselected
cells that share the same row and column with the selected cells has
remained in their states without change. Based on the electrical

Figure 9. (a) Operation of a nonvolatile ion-intercalation programmable resistor. Left: Device structure featuring ion reservoir that also serves
as gate, an electrolyte and a channel material where the ions behave as dopants. Center: Device programming by ion insertion in (top) and
extraction from (bottom) the channel. Right: Nonvolatility when gate is open; ions remain in channel. Reprinted with permission from ref 111.
Copyright 2022 IEEE. (b) Schematic diagram of Pd/PSG/WO3 nonvolatile protonic programmable resistor. (c) Top: False-color SEM
micrograph of fabricated device. Bottom: TEM cross-section of fabricated device. (d)Modulation performance of a protonic device in response
to a positive stream of 5 ns pulses followed by an identical negative stream. (e) Top: Conductance retention characteristics of protonic device
during 100 s reads of the conductance state. Bottom: Endurance characterization of a protonic device displaying reproducible modulation over
105 pulses conducted over 30 h. Reprinted with permission from ref 110. Copyright 2022 American Association for the Advancement of
Science. (f) Top: Channel current before, during, and after a 5 ns pulse applied to a protonic device clearly displaying impulse-like fast
modulation characteristics. Bottom: Channel current under positive trapezoidal voltage pulse starting at t = 2 μs with 1 μs rise time, 1 μs hold
time and 1 μs fall time in air (red) and in forming gas under a low/high voltage pulse (blue/green). The experiment reveals the existence of
transient displacement current, volatile field-effect current and nonvolatile proton intercalation current. Reprinted with permission from ref
111. Copyright 2022 IEEE.
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characteristics of the ferroelectric synaptic transistor and its array, the
performance of convolutional neural networks with VGG-8 structure
was demonstrated using the simulationmethod.93 In a simulation based
on the electrical characteristics of the ferroelectric synaptic transistor
array, convolutional neural networks achieved an image accuracy of
90.3% on the complex image data set, CIFAR-10 (Figure 8g). This
report experimentally demonstrated a neural network based on
ferroelectric transistors and their convolution operations. Also, a row-
and column-wise parallel programming method, which could decrease
the training time, was experimentally proposed. At present, the
demonstration of ferroelectric transistors for neuromorphic applica-
tions is usually done with small-density arrays or simulation methods
without experimental validation of highly scaled, high-density neural
networks based on ferroelectric transistors.94−96 Further study needs to
be done on the demonstration of a highly scaled transistor array for
neuromorphic applications with considerations of array operations and
their characteristics.

2.4. Ion-Intercalation Programmable Resistors. Recently, a
device family of nonvolatile three-terminal programmable resistors for
deep learning applications has emerged.97 This device class, often
referred to as ECRAM (Electrochemical Random-Access Memory),
ENODe (Electrochemical Neuromorphic Device), or EIS (Electro-
chemical Ionic Synapse), relies on controlled intercalation of dopant
ions in a semiconductor channel98−111 (Figure 9a). In essence, ions are
shuttled back and forth between an ion reservoir (also performing the
role of gate) and a channel, where the ions behave as dopants in
response to the application of positive or negative voltage pulses to the
reservoir with respect to the channel. In this way, the conductivity of the
channel can be increased or decreased in a controlled fashion. During
device programming, the ions are transferred through an electrolyte

that separates the gate from the channel while the corresponding
electrons flow through the outside circuit. When the gate/reservoir is
electrically left open, electrons cannot flow and the ions remain in place
in the channel. Hence, the device exhibits nonvolatile characteristics.

Ion-intercalation programmable resistors have been demonstrated
using Li+,98−101 O2−,102−104 and H+,106−111 among other ions. The use
of H+ (protons) is particularly attractive because their small radius and
light mass promise high speed and energy-efficient operation with
minimum volume expansion and contraction. Also, unlikemost of other
ions, protons are CMOS compatible, a key consideration as deep
learning accelerators will need to be constructed on a Si CMOS
platform. This has implications for the nature of the ion, but also the
choice of gate, channel and electrolyte materials, as well as the
processing temperatures involved in device fabrication. Early proton-
based device demonstrations were based on polymeric materials for the
channel, reservoir and electrolyte.105,106 Organic materials are not
CMOS compatible in that they cannot withstand the processing
temperatures generally involved in Back-End-Of-the-Line (BEOL)
CMOS fabrication. Later demonstrations used Pd as an inorganic
reservoir/gate and ametal oxide (WO3) as an inorganic channel but still
used polymeric Nafion as the electrolyte.107 Proton-based devices have
also been demonstrated using inorganic 2D electrolytes.108

Recently, the use of phosphosilicate glass (PSG) as electrolyte in
combination with a Pd reservoir/gate and a WO3 channel has been
demonstrated as the key innovation to resolve the critical limitation of
protonic devices: the absence of a CMOS-compatible, solid-state
material system.109−111 PSG is the most suitable choice for this
application. It is a well-known material in Si technology with
straightforward BEOL integration capabilities; it is an excellent
electrical insulator, and it also exhibits good proton conductivity at

Figure 10. (a−c) Initial fundamental studies of memristive phenomena in 2D semiconducting MoS2. (a) Schematic and atomic force
microscopy image of a single-flake monolayer MoS2 device with an intersecting grain boundary. (b) Gate-tunable memristive response in an
intersecting grain boundary monolayer MoS2 device. In this case, the set voltage between the high and low resistance states is controlled by the
gate potential (Vg). (c) Gate-tunablememristive response in a bisecting grain boundarymonolayerMoS2 device. In this case, the current in both
the high and low resistance states is modulated by the gate potential. Reprinted with permission from ref 132. Copyright 2015 Springer Nature.
(d−g) Neuromorphic functionality in 2D memtransistors. (d) The unipolar synaptic response of 2D memtransistors can be tuned from
potentiation to depression as a function of the gate bias (VG). Reprinted with permission from ref 136. Copyright 2021 American Chemical
Society. (e) Multiterminal 2D memtransistors show heterosynaptic responses where the conductance state between two contacts (contacts 2
and 4) is modulated by voltage pulsing between two orthogonal contacts (contacts 5 and 6). Reprinted with permission from ref 133. Copyright
2018 Springer Nature. (f) Schematic and (g) false-colored scanning electron micrograph of a dual-gated 2D memtransistor crossbar array.
Reprinted with permission from ref 137. Copyright 2020 John Wiley & Sons.
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room temperature.112 In fact, PSG has been used as a proton-exchange
membrane in microfuel cells.113 Micron-scale protonic resistors109 and
nanoscale active area devices110 (Figure 9b, c) exhibit high operation
speed (5 ns/pulse), high energy efficiency (∼fJ/pulse), many (∼1000)
nonvolatile conductance states centered around 0.1 μS and spanning a
large dynamic range (10×), nearly linear and symmetric modulation for
incremental and decremental conductance changes, good retention and
high endurance (Figure 9d, e).

A detailed study of the dynamics of these devices has also been
carried out by Onen et al.111 They have revealed a device response that
includes a transient field-effect-induced channel current that results
from proton movement through the PSG during the gate voltage pulse.
In effect, this device behaves as aMOSFETwith a threshold voltage that
shifts negative when the PSG is flooded with protons. In addition, when
the magnitude of the gate voltage pulse exceeds a certain minimum, the
expected nonvolatile proton intercalation induced channel current was
observed. High-speedmeasurements reveal that in response to 5 ns gate
voltage pulses, this nonvolatile conductance modulation occurs in an
impulse-like fashion, without any extended equilibration period (Figure
9f).

The nonvolatile programmable protonic ion intercalation resistors
described here display state-of-the-art combined material, processing,
and performance properties of potential for analog deep learning
applications. The operating gate voltage should be improved by
engineering the PSG and Pd/PSG and PSG/WO3 interfaces.

2.5. Other Emerging Memristive Devices. The development of
memristive materials and devices including Spin-transfer Torque
Magnetoresistive RAM (STT-MRAM), memtransistor, and gate-
injection device can offer possibilities to improve memristive device
performance and neuromorphic systems.114−116 Magnetic device has
been studied for several decades, and various operation mechanisms
have been reported.117−119 After predicting the Spin-transfer Torque
(STT) effect without the external magnetic field by Slonczewski120 and
Berger121 in 1996, STT-MRAM with magnetic tunneling junction
(MTJ) has become an important memristive device in neuromorphic
applications, exhibiting small device-to-device variation, fast switching
speed, and excellent endurance.122−125 However, despite the superior
device properties of STT-MRAM, the low resistance of STT-MRAM
can lead to large power consumption in a conventional crossbar array

for analogue multiply accumulate operations, which are essential
operations for neuromorphic systems. To overcome this issue, Jung et
al. demonstrated a 64 × 64 crossbar array based on STT-MRAM cells
with an architecture that includes the resistance of a field-effect
transistor (FET), as every MTJ is accompanied by a FET switch.126

Additionally, a multistate STT-MRAM design also have been proposed
for neuromorphic computing schemes as artificial synapses.127

The defining structural characteristic of a 2Dmaterial is its nanoscale
thickness. For 2D semiconductors, this nanoscale thickness has
multiple implications for electronic properties including quantum
confinement effects that modulate band structure, reduced dielectric
screening that results in enhanced electrostatic modulation by applied
gate electric fields, and charge transport that is strongly affected by
structural defects.128 In the specific case of 2D transition metal
dichalcogenides (e.g., MoS2), nanoscale thickness also implies reduced
energy barriers for point defect motion, especially in polycrystalline
materials where point defect motion is further enhanced along grain
boundaries.129,130 These properties of 2D transition metal dichalcoge-
nides present opportunities for memristive materials and devices.131

For example, the low energy barrier for point defect motion in
monolayer polycrystalline MoS2 implies that the spatial doping profile
and thus the charge transport properties can be reconfigured by the
application of modest lateral electric fields. In this manner, memristive
phenomena have been observed in monolayer polycrystalline MoS2
devices.132 By concurrently applying a vertical electric field across a gate
dielectric, the memristive response can be electrostatically modulated
with the details depending on the grain boundary orientation in the
device channel.132 (Figure 10a−c) Since these devices combine the
nonvolatile two-terminal response of a memristor with the volatile gate
modulation of a transistor, they have been dubbed memtransistors.133

Although early work focused on devices with a small number of grain
boundaries and thus were sensitive to stochastic variations in grain
boundary orientation from device to device,132 later work recognized
that the incorporation of several grain boundaries per device leads to
statistical averaging at the single device level, which substantially
improves memtransistor yield and wafer-scale uniformity.133 Efforts to
control polycrystalline grain structure and point defect concentra-
tion134,135 have also proven successful at improving memtransistor
device metrics (e.g., smaller device dimensions, lower voltage

Figure 11. (a) Schematic and band diagram of GIFET. The charge is injected from or extracted to gate metal by thermionic emission. (b)
Repeated LTP-LTD characteristics on a single GIFET device with 1000 potentiation − 1000 depression (5 V/−3.3 V, 500 μs). (c) The
endurance of GIFET over 2 × 105 switching cycles (2 × 108 pulses). Each switching cycle is composed of 500 write pulses with 5 V, 200 μs and
500 erase pulses with −5 V, 200 μs. Reprinted with permission under a Creative Commons CC BY License from ref 140. Copyright 2022
Springer Nature.

ACS Nano www.acsnano.org Review

https://doi.org/10.1021/acsnano.3c03505
ACS Nano 2023, 17, 11994−12039

12003

https://pubs.acs.org/doi/10.1021/acsnano.3c03505?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.3c03505?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.3c03505?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.3c03505?fig=fig11&ref=pdf
www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.3c03505?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


operation, and reduced power consumption) in addition to enabling
neuromorphic functionality such as gate-tunable potentiation and
depression (Figure 10d)136 and heterosynaptic responses in multi-
terminal memtransistors133 (Figure 10e). The 2D memtransistor
channel can also be gated from above and below, which enables dual-
gate memtransistors (Figure 10f) that have been incorporated into
crossbar array architectures with minimal crosstalk, disturbance, or
sneak currents137 (Figure 10g). Since 2D memtransistors are still in
their infancy, many research opportunities remain at the materials level
(e.g., exploring different 2D semiconductors, dopants, contacts, and
gate dielectrics) that are likely to further diversify the device and circuit
possibilities both in conventional neuromorphic computing138 and
emerging biorealistic systems.139

A gate injection-based filed-effect transistor (GIFET) has been
demonstrated by employing thermionic emission with superior
synaptic characteristics (Figure 11a).140 To achieve linearity, the
authors suggest an operation method to program and erase the charges
in the stored layer by thermionic emission from the gate metal (Figure
11b). The barrier height between the charge store layer (CSL, WOx)
and blocking layer (a-Si:H) should be low to guarantee sufficient
current density for a high on/off ratio and to hold electrons. The
amount of charge stored in the CSL layer changes the Si channel’s
depletion region by field-effect, and this is the major mechanism to
control synapse weight in GIFET. The LTP-LTD characteristic of the
GIFET has high linearity with low asymmetric ratio, and the device also
achieves robust endurance (≥2 × 108 pulses) with consecutive
potentiation and depression pulses and retention properties with a
data loss of 5.45% (13.6 nS) (Figure 11c). GIFET has a similar structure
to the currently commercialized CTF (charge trap flash), but the
engineering of the gate stack and the changing of the charge injection−

extraction mechanism allow GIFET to be a promising memristive
device. Based on thermionic emission mechanism, GIFET achieves
excellent synaptic properties such as number of conductance states, on/
off ratio, spatiotemporal variation, linearity, retention, and endurance.
Moreover, all of the processes andmaterials for GIFET fabrication were
CMOS compatible, which means it could be used as a near-future
neuromorphic device. Further development to reduce programming
voltage, integrate into a large array, and scale down will provide
opportunities for the use of GIFET in neuromorphic hardware.

3. MEMRISTOR THEORY
3.1. Edge of Chaos-Induced Bifurcations in Biomi-

metic Locally Active Circuits. Local Activity141 refers to the
capability of a physical system to act as a source of local energy
upon suitable polarization. Importantly, Local Activity is a
fundamental prerequisite for a system to display complex
dynamical behaviors,142 in certain occasions. Edge of Chaos141

denotes a particularly attractive condition, in which a physical
system is both locally active and asymptotically stable at some
operating point. It is when a system is poised on the Edge of
Chaos that emergent phenomena may appear across its physical
medium out of some bifurcation.143 Recurring to the universal
Theory of Local Activity and Edge of Chaos is necessary to
explain the mechanisms behind the appearance of complex
phenomena in any physical system, which has the possibility to
exchange energy with the respective environment.144 The recent
availability of memristor nanoscale physical realizations,145,146

blessed with the capability to feature a Negative Differential

Figure 12. (a) The simplest ever-reported bioinspired circuit,148 which reproduces the counterintuitive diffusion-driven transition from
quiescence to sustained oscillatory behavior, observed by Smale in an eight-order reaction-diffusion system from cellular biology,149 through
half the number of dynamical states, encoded in two capacitors and two locally active NaMLab memristors,146 on the proviso that the two
identical memristive Pearson-Anson cells are preliminarily poised on some common Edge of Chaos operating point before the diffusion path,
enabling their diffusive interaction, is activated. The four degrees of freedom of the proposed fourth-order RD-MCNN are encoded in the
memristors’ states x1 and x2, and in the capacitors’ voltages v1 and v2 (refer to ref 148 for details). (b, c) Diffusion-induced transition of the
bioinspired array of (a) from silence to persistent oscillatory mode (all details on memristor model and cell parameters, chosen through a
systematicmethodology fromLocal Activity and Edge of Chaos Theory, are reported in ref 148). (b) Progressive approach of the states x1 and x2
of memristorsM1 andM2 toward the same quiescent steady state, which they would independently attain, irrespective of the initial condition, in
case they were let evolve in the respective uncoupled cell. Here RC = 50 Ω, while the initial condition for the cell I = 1(2) is arbitrarily set to
(xi(0), vC,i (0)) = (253.15, ζ·0.1mV). (c) Formation of one of the two admissible dynamic patterns, across the homogeneous cellular medium, as
determined by the choice of the initial conditions for the four RD-MCNN states, which are set as specified earlier for the simulation result in (b).
Even though here RC = 25 Ω, reducing the coupling resistance progressively from positive infinity, first the homogeneous solution of the array
loses stability, allowing the two-cell array to enter a bistability regime with static pattern formation, out of a pitchfork supercritical bifurcation,
forRC =RC,P = 49.75Ω, and later on, due to a Hopf supercritical bifurcation, the two admissible locally stable inhomogeneous static solutions of
the RD-MCNN become unstable, while concurrently two infinitesimal almost-sinusoidal locally stable oscillations, increasing in amplitude as
the coupling strength is further increased, are found to develop across them, for RC = RC,H = 28.1 Ω.153 Reprinted with permission from ref 148.
Copyright 2022 IEEE.
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Resistance (NDR),147 which is a signature for Local Activity,
enables the design of circuits, which, once some of their
constitutive units are poised on the Edge of Chaos, may
reproduce complex bifurcation phenomena, occurring in
biological systems, while utilizing a lower number of degrees
of freedom than their original counterparts. Two major works
provide proof for this claim.
In particular, Ascoli et al.148 presented the simplest ever-

reported bioinspired physical system, which reproduces the
same counterintuitive phenomenon, reported by the American
luminary Stephen Smale in 1974,149 when, while investigating a
model from cellular biology, he witnessed two identical fourth-
order reaction cells, “mathematically dead” on their own, pulsing
together indefinitely, upon diffusive coupling. The proposed
bioinspired reaction-diffusion network, consisting of two
identical and resistively coupled second-order memristive
Pearson-Anson cells, features half the number of states than
the corresponding biological system (themathematical model in
ref 150 also reproduces the Smale Paradox from ref 149 through
a lower number of degrees of freedom, specifically 6, than the
biological counterpart, but it requires two additional state
variables as compared to the proposed two-cell array). As shown
in Figure 12a, the neural network contains only 9 circuit
elements, specifically 2 batteries, 3 linear resistors, 2 linear
capacitors, and 2 volatile memristors, manufactured with

niobium oxide at the facilities of NaMLab (see ref 146 for
details on the physical stack of each of the resistance switching
memories, which are referred to as NaMLab memristors, in the
remainder of this chapter). Employing powerful tools from the
theory of Local Activity and applying methods from Nonlinear
Dynamics to an accurate model of the memristor cellular unit, a
comprehensive picture for its local and global behavior was
drawn. This study, providing a systematic technique to choose
the design parameters of the two-cell array, so as to allow
diffusion-driven instabilities to appear therein, further enabled
to identify the true origin for Smale’s paradoxical observations:
the appearance of symmetry-breaking effects, accompanied by
the steady-state development of sustained oscillations, i.e.
dynamic patterns, across the homogeneous cellular medium
(refer to Figure 12b, c) is in fact possible if and only if the two
identical reaction cells of themedium are preliminarily poised on
a common Edge of Chaos (i.e., locally active and asymptotically
stable) operating point, before the insertion of a dissipative path,
joining the top terminals of their capacitors, let them interact
diffusively. More specifically, upon a progressive decrease in the
coupling resistance�refer to the circuit implementation of
Figure 12a�the Reaction-Diffusion Memristor Cellular Non-
linear Network (RD-MCNN) first undergoes a supercritical
pitchfork bifurcation,151 which signals the destabilization of the
homogeneous solution, with the simultaneous emergence of

Figure 13. (a) The simplest ever-proposed reaction-diffusion system,156 which captures the same unexpected dissipation-induced static pattern
formation, appearing, together with the destabilization of the homogeneous solution, in Turing-based models,155 through half the number of
dynamical states, encoded in two niobium oxide-based threshold switches from NaMLab,146 providing its two identical memristive cells are
preliminarily poised on some common locally active and asymptotically stable operating point, before the inclusion of a linear resistor of
resistance RC between the memristors’ positive terminals turns the diffusion process on. (b, c) Symmetry-breaking effects in the bioinspired
two-cell array of (a) (all details on memristor model and cell parameters, chosen through a systematic methodology from Local Activity and
Edge of Chaos Theory, are reported in ref 156). (b) Convergence of the states x1 and x2 of memristors M1 and M2 toward the same asymptotic
level, which they would independently approach, irrespective of the initial condition, if they were let evolve in the respective uncoupled cell.
Here RC = 100 Ω, while the initial condition for the memristor M1 (M2) is arbitrarily set to x1(0) = 300 (x1(0) = 500). (c) Progressive formation
across the homogeneous cellular medium of one of the two admissible Turing patterns, as dictated by the choice of the initial conditions for the
two RD-MCNN states, which are set as specified earlier for the simulation result in (b). While here RC = 25 Ω, reducing the coupling resistance
progressively from positive infinity, the homogeneous solution of the two-cell array actually loses stability, and static pattern formation first
occurs, due to a supercritical pitchfork bifurcation, for RC = RC,P = 49.75 Ω156 (see ref 157 for insights on static pattern formation in large RD-
MCNN arrays). Reprinted with permission from ref 156. Copyright 2022 IEEE.
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either of two possible locally stable static inhomogeneous
solutions, depending upon the initial condition, and then a
supercritical Hopf bifurcation,152 which endows the proposed
bioinspired cellular array with the capability to support either of
two locally stable dynamic inhomogeneous solutions, as
established by the starting conditions for the cells’ states, at
the expenses of the static Turing patterns, which concurrently
lose stability (consult ref 153 for more details).
In his seminal paper154 Alan Turing, the Father of Artificial

Intelligence, devised the model of a linear dynamical system,
consisting of two identical diffusively coupled second-order
reaction cells, which is subject to dissipation-driven instabilities.
Due to the lack of a nonlinear saturation mechanism, the
destabilization of the homogeneous solution of the array
resulted here in the asymptotic divergence of its four state
variables. Including a nonlinear term in a second-order Turing-
like reaction cell (see ref 155, for example), the diffusion-driven
symmetry-breaking phenomenon in the resulting fourth-order
dynamical system may lead to the steady-state appearance of
static inhomogeneous solutions. Ascoli et al. presented the
simplest ever-reported two-cell neural network,156 which,
leveraging the NDR of the NaMLab memristor, is capable to
support dissipation-induced static pattern formation through
half the number of states than Turing-like reaction-diffusion
arrays. As shown in Figure 13a, the proposed neural network is
composed of just 7 one-ports, specifically 2 DC voltage sources,
3 linear resistors, and 2 niobium oxide-based volatile memristors
from NaMLab.146 In this work, they showed that complexity
may emerge in a physical circuit, hosting no other dynamic

component besides the 2 locally active memristors.145 As
reported in ref 156, an in-depth circuit- and system-theoretic
analysis allowed Ascoli et al. to gain a thorough understanding of
the local and global dynamics of the bioinspired reaction-
diffusion network of Figure 13a, to prove that the preliminary
polarization of each of its two identical constitutive units, when
isolated one from the other, on some common Edge of Chaos
operating point is the conditio sine qua non for the destabilization
of the homogeneous solution of the array, later on, when a
diffusion process establishes their interaction, and to enable the
identification of the local supercritical pitchfork bifurcation,151

which spawns the birth of two locally stable inhomogeneous
static solutions across the respective cellular medium under a
sufficiently strong coupling condition (see Figure 13b, c).
All in all, the origin for the diffusion-induced emergent

phenomena, appearing in each of the bioinspired RD-MCNNs,
respectively presented in ref 148 and ref 156, is the preliminary
polarization of their uncoupled reaction cells on the Edge of
Chaos operating regime. Importantly, the NDR of the NaMLab
memristor plays a fundamental role in biasing these cells on the
Edge of Chaos. Moreover, the two studies revealed the potential
of memristors with NDR to enable the reproduction of high-
order dynamic phenomena in biology through lower-order
electrical circuits.

3.2. High-Frequency AC Response of ReRAM Cells.
Depending on its switching sensitivity to input level and polarity,
as well as its memory state(s), a highly nonlinear dynamical
process determines the input-induced response of a real-world
nonvolatile memristor. The recent research works in ref 158 and

Figure 14. (a−c) Response of the TaOx-based memristor from HP Laboratories in the high frequency limit. (a) Steady-state i−v plot of the
TaOx-basedmemristor model,160 under an AC voltage input of the form v = (0.5 V) sin (2π(100MHz)t). (b) Time-waveform of the device state
variable x, preliminarily initialized at 0.2 (x0 = 0.2), responding to the same periodic voltage input. The inset provides a detailed view of the x vs t
response over the last two input cycles of the simulated time-response. (c) Zoomed-in view of the x vs t response in (b) over the first three input
cycles. Reprinted with permission from ref 158. Copyright 2022 IEEE. (d, e) Fading memory in the TaOx-based memristor model in the high
frequency limit. (d) The time-waveforms of the state variable x, for the initial conditions defined in the set x0 ∈ {0.2, 0.4, 0.6, 0.8, 1}. Each of the
depicted time-responses was induced by a zero-mean sinusoidal voltage input with amplitude v̂ = 0.5 V and frequency f = 100 MHz. At some
finite time, all x vs t responses converge to the same steady-state oscillation, as illustrated in panel (e). (f, g) TaOx memristor state tuning with
high-frequency bipolar square-wave periodic voltage inputs (see exemplary plot in panel (f)). The illustrated x vs t plots in (g) were obtained by
stimulating the nanodevice with a bipolar square-wave periodic voltage input with amplitude v̂ = V = 0.45 V and frequency f = 5.8 MHz, for the
set of DC offset values V0 listed in the figure legend. EachV0 value was calculated by solving eq 5 with respect to x ̅s, for x ̅s ∈ {0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9}. The above-mentioned frequency was chosen such so as to induce an infinitesimally small periodic oscillation in the state x
about xs̅, in each of the simulated x vs t responses. A mathematical method for determining the frequency value that characterizes an input as a
high-frequency periodic signal, based on the definition provided toward the beginning of this section, can be found in ref 158. Reprinted with
permission from ref 158. Copyright 2022 IEEE.
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ref 159, demonstrated how a system- and circuit-theoretic
analysis of a nonlinear system, such as the memristor, enables to
draw a comprehensive picture for its response to input/initial
condition combinations of interest to the application at hand. In
particular, the mechanisms underlying the resistance switching
phenomenon that occur in a TaOx-based nanodevice,
manufactured and modeled in Hewlett-Packard (HP) Labo-
ratories,160 when stimulated with high-frequency AC periodic
inputs, were elucidated on the basis of deep circuit-theoretic
study. But what does a high frequency periodic input mean in
terms of the memristor response? Quoting the definition
provided in ref 158: “A high-f requency periodic input induces a
solution waveform of the device state, which, af ter some f inite time,
becomes periodic with such a small peak-to-peak amplitude that the
resulting device current−voltage locus exhibits no apparent
hysteresis.”
Figure 14a illustrates a seemingly nonhysteretic steady-state

current−voltage locus of the TaOx memristor, induced by a
high-frequency zero-mean sinusoidal voltage input (refer to the
figure caption for further details). This device is a typical
example of a first-order voltage controlled extended mem-
ristor,161 whose high-level differential algebraic equation (DAE)
set model reads as

=i G x v v( , ) (1)

=x g x v( , ) (2)

where i denotes the current flowing through the memristor, v is
the voltage across the memristor terminals, and x stands for the
device only state variable, which physically represents the
fraction of the oxide film, which is most conductive, due to a
higher distribution of oxygen vacancies within its medium. As a
result, the state x of the TaOx memristor, discussed in this
section, may only assume values from the closed set [0, 1]. The
functions G(·) and g(·) are the memristor memductance and
state evolution function, respectively. Further details regarding
the physical processes underlying the operation of the TaOx
memristor under study, as well as the specific functional forms of
eqs 1 and 2, assumed by its simulationmodel, can be found in ref
159. Notably, the vast majority of the real-world resistive
switches reported to date can be modeled by following the
mathematical formulation of extended memristors, as reported
in eqs 1−2. Figure 14b plots the time-waveform of the TaOx
memristor state, x, for the same simulation settings as the ones
employed in Figure 14a. The inset in Figure 14b zooms in on the
last three periods of the illustrated x vs t response. Interestingly,
at steady-state, x oscillates periodically with a miniscule
amplitude about a mean value x̅s, i.e., at steady state, x(t) ≈ x̅s
(see the dotted horizontal line in the inset in Figure 14b). Figure
14c visualizes, in detail, the time-response of x over the three first
cycles of the periodic input in Figure 14b, that is, for n ∈ {1, 2,
3}, where n represents the input cycle number. Δxn, Δxn

(+), and
Δxn

(−), correspond to the net change, increase, and decrease of x
over the n-th input cycle, respectively. The dotted horizontal
lines mark the runningmean value x̅n of state variable x over each
of the three first input cycles. It can be observed that the
memristor state experiences an insignificant net changeΔxn over
the course of each cycle n of a high-frequency excitation signal
during the transient phase of its oscillation. According to the
mathematical analyses introduced in ref 158 and ref 159, which
were supported by the afore-described behavioral observations,
the value of x̅ over each input cycle of a purely-AC periodic high-
frequency voltage stimulus v(t), characterized by a very small

period T, can be related to the value of Δx over the same cycle
through the following analytical equation:
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The functions g(+)(·) and g(−)(·) (g(+)(·) ≠ g(−)(·)) are sign-
invariant functions with opposite signs, modeling the device
switching kinetics in the positive and negative stimulation cases,
respectively. The moment at which transients decay to zero, the
time-waveform of x becomes periodic, oscillating about x̅s with a
negligible peak-to-peak amplitude (see the inset in Figure 14b).
Thus, Δx = 0 and eq 3 are simplified to the following analytical
expression:
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The above equation allows calculation of themean value x̅s of the
steady-state periodic oscillation in the memristor state x, for a
predefined high-frequency periodic voltage input v(t). Impor-
tantly, eq 4 describes the condition for the emergence of the
fading memory phenomenon in memristors,162−164 based on
which the steady-state time-response of the state variable x(t),
depends on the characteristics of the voltage input v(t), but not
on the initial memristor state x0 (see Figure 14d, e). Through eq
4, the theoretical investigation performed in ref 158 and ref 159
provided a mathematical proof for the fading memory
phenomenon in resistive switches that exhibit asymmetric
switching kinetics with respect to the input polarity. The
predictive power of eqs 3 and 4 was validated through a series of
simulation experiments, utilizing periodic inputs with square-
wave, sinusoidal, and triangle shapes. As a matter of fact,
focusing in the case where the input corresponds to a high-
frequency bipolar square-wave AC input, eq 4 may be simplified
to a closed-form analytical formula that reads as

+ + + =+g x V V g x V V( , ) ( , ) 0s s
( )

0
( )

0 (5)

where v̂ = V is the amplitude of the square-wave voltage input,
and V0 is the DC offset component (see Figure 14f). The study
in ref 158 showed that, with the use of eq 5, the TaOx memristor
model may be programmed to any target state from a given set
by properly tuning the DC offset level V0 of a fixed V-amplitude
high-frequency square-wave AC periodic voltage input, as
demonstrated in Figure 14g, highlighting a potential application
of the discussed theoretical research.
Finally, it should be noted that the methodologies described

in this manuscript are not restricted to the specific TaOx
memristor mathematical description, which represents the
object of investigation here, but can be applied to any first-
order sign-invariant nonvolatile memristor DAE set model,
irrespective of the expression for its state evolution function, as
explained thoroughly in refs 165−167. Concluding, even though
the results discussed in ref 158 and ref 159 are based solely on
theoretical studies, it is anticipated that they shall inspire the
development of programming algorithms and/or methods for
real-world nonvolatile memristors in the years to come.

4. ALGORITHM AND ARCHITECTURE
4.1. Algorithms and Architectures for High-Perform-

ance DNN Training with Analog Resistive Crosspoint
Arrays. Background and Principle of Accelerated DNN
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Training Using Analog Crosspoint Arrays.DNNs have become
a powerful backbone technology for many artificial intelligence
(AI) applications such as computer vision, speech recognition,
and natural language processing. Thus, there is a growing
demand for hardware that can perform DNN training faster and
more energy-efficiently, as this would enable more advanced AI
applications. Training DNNs for large-scale models and data
sets is computationally intensive and time-consuming, even with
data center-scale computing resources. Special-purpose digital
hardware, including graphics processing units (GPUs), field-
programmable gate arrays (FPGAs), and application-specific
integrated circuits (ASICs), has been developed and used to
address the high computational loads associated with DNN
training. As a promising alternative to digital approaches, analog
resistive crosspoint array-based architectures have been
proposed and studied with expectations of significant perform-
ance boost.168−170

In principle, analog resistive crosspoint arrays are capable of
performing all three core matrix operations (forward pass,
backward pass, and weight update) of the standard DNN
training algorithm, Stochastic Gradient Descent (SGD), in a
fully parallel manner, which can lead to significant speed-up in
DNN training.169 By storing the weight matrix in the array and
applying voltages to the crossbar wires, parallel matrix-vector
multiplications corresponding to the forward and backward pass
can be performed in parallel using Ohm’s law and Kirchhoff’s

current law.171 Additionally, with the recent development of
array-level parallel update techniques,169,172 the entire array can
be updated at O(1) complexity, completing fully parallel DNN
training on analog resistive crosspoint arrays. However, it has
been revealed that the ultimate goal, energy-efficient accel-
eration of DNN training, can be achieved only when the cross-
point elements meet the stringent requirements.

Device Requirements for Analog Crosspoint Array-Based
DNN Training Hardware. During the early stages of research, it
was anticipated that the error tolerance and noise immunity
inherent in neural networks would compensate for imperfec-
tions in practical resistive cross-point devices, thereby ensuring
successful DNN training. While it is true that neural networks
exhibit some degree of intrinsic error tolerance and noise
immunity, it has now become apparent that certain device
characteristics can significantly impede the classification
accuracy of a DNN if these criteria are not met. Based on
simulation studies of neural network training on analog crossbar
array architectures,169,173−179 four critical device characteristics
have been identified as necessary for achieving high classification
accuracy: (1) symmetric and bidirectional conductance update,
(2) 256 or more conductance states, (3) several seconds of
weight retention time constant, and (4) low cycle-to-cycle
variation.
Emerging memory device technologies, including

ReRAM,180−183 conductive bridge random-access memory

Figure 15. Hardware demonstration of the Tiki-Taka algorithm (TT) using the ECRAM array. (a) Schematic illustration of TT algorithm.
Unlike SGD, the weight update is done on the auxiliary array, A, instead of the core array, C. Weight values in A are then transferred to C on a
regular frequency. (b) SEM image of 2 × 2 ECRAM arrays. (c) Experimentally measured weight traces of A (top) and C (bottom) during the
linear regression demonstration, converging to the zero point and targeted value as expected, respectively.195 Reprinted with permission under
a Creative Commons CC BY License from ref 195. Copyright 2022 IEEE.
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(CBRAM),184,185 phase-change memory (PCM),186,187 electro-
chemical random-access memory (ECRAM),98,102,110 ferro-
electric field-effect transistor (FeFET),188 and capacitor-based
synapses,173,189,190 have been explored as potential solutions for
implementing ideal analog crosspoint arrays for DNN training.
While significant progress has been made in improving the
device characteristics of these emerging memory technologies,
further improvement in device characteristics is still required to
achieve the large acceleration and software-level classification
accuracy desired for DNN training.

Algorithms and Architectures to Overcome Device Non-
idealities.Recent algorithm studies191 have demonstrated that it
is possible to compensate for some of the critical nonidealities in
memory devices used for DNN acceleration. One example of an
algorithmic remedy is the Tiki-Taka algorithm (TT),192 which
addresses the challenges of nonideal memory elements in analog
resistive crosspoint arrays. Developed by the IBM group, TT
utilizes the interaction between the core array and an auxiliary
array to compensate for the negative impact of update
asymmetry during training. The auxiliary array accumulates
weight change values, which are then buffered and transferred to
the core array by using a specific threshold. A quantitative study
has analyzed the update symmetry requirement for core and
auxiliary arrays separately, showing that it could be further
relaxed.193 TTv2, the second version of the Tiki-Taka algorithm,
uses an additional digital array to significantly reduce the
number of conductance states required.194 This enables the
training of DNNs on extremely noisy devices and reduces the
number of states required for the auxiliary device to barely 10
levels. Experimental demonstrations of the algorithms on
ECRAM195 and ReRAM arrays196 have been reported, which
verify the successful training with practical devices. These
studies suggest that algorithmic remedies can overcome

nonidealities in memory devices and improve software-level
classification accuracy (Figure 15).
On the other hand, architectures have been developed to

overcome nonidealities in memory devices. For example, Burr et
al. proposed an architecture that utilizes a pair of PCM and
capacitor-based synapses (3T1C) to overcome the nonidealities
of each cell.197 While 3T1C cells are capable of fine-grained,
bidirectional, and symmetric conductance updates, they suffer
from volatility and significant asymmetry deviation due to the
spatial variability of the MOSFET’s current level. PCMs, on the
other hand, have reliable memory retention but require periodic
reset cycles to address unidirectional updates. The architecture
that combines PCM and 3T1C achieves highly precise and
nonvolatile on-chip learning. By using alternating polarity
inversion to correct the asymmetry deviation in 3T1C, it is
possible to train DNNs on the chip with the same level of
precision as the floating-point equivalent reference level. This
architectural design has been studied further and is considered a
potential candidate for future realization.
The algorithmic and architectural studies demonstrate the

potential of analog resistive crosspoint arrays for DNN training,
even in the presence of nonideal memory elements. As research
in this field continues, further advances will be made to improve
the efficiency and accuracy of DNN training on analogue
crosspoint arrays.

4.2. Modeling and Analysis of Device Thermal
Variation for Reliable DNN Inference. With the employed
DNN model, the intense computation inside the ReRAM array
increases the power density within the small area, which
subsequently heats the device. The increased temperature will
weaken the resistive memory cell to retain the programmed
values, the conductance states will drift away from the initial
value, leading to significant accuracy degradation in CIM.198,199

On the algorithm side, structured pruning algorithm remove the

Figure 16. (a) NeuroSim-based hardware inference accuracy of 4-bit ResNet-18 with different fine-grained and coarse-grained sparsity. (b)
Overview of the proposed robustness-aware structured pruning algorithm. (c−f) Mixed hardware−software experiment results of 4-bit DNN
models on CIFAR-10 data set with static 55 and 85 °C operating temperature. (c, d) 4-bit ResNet-18 inference accuracy. (e−f) 4-bit VGG-8
inference accuracy. Reprinted with permission from ref 205. Copyright 2022 IEEE.
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redundant weights in a group-wise fashion, creating the column-
level or array-level computation skipping during CIM.200−202

The prevalent usage of pruning algorithms changes the weight
distribution due to the reduction of redundancy. In the
meantime, the programmed weight values are also affected by
the conductance change. Therefore, analyzing the impact of the
thermal variations on the sparse model is critical but remains
underexplored.
The group Lasso200 algorithm penalizes the group of weights

via regularization during DNN training. On the hardware side,
low precision weights can be represented as the shifted positive
weights subtracted by the middle-value offset. In NeuroSim,203

the synaptic ReRAM array will be programmed as the positive
weight, and the adjacent dummy column stores the global
midvalue offset. With 4-bit weights, shifting and programming
all of the level “0” (0000) to level “7” (0111) increases the
percentage of the LRS inside the synaptic array, regardless of
structured or unstructured pruning.
However, since the large number of sparse groups can be

skipped during CIM, the structured pruning aims to
“concentrate-and-conquer” the sensitive LRS level via the
Lasso group Lasso. On the contrary, element-wise pruning
generates a high percentage of nonskippable level “7” in the
ReRAM crossbar array, amplifying LRS distortion and
degrading the model robustness and accuracy. With the
measured conductance from our ReRAM prototype chip,204

Figure 16a shows the “accuracy-robustness-sparsity” trade-off
with structured and unstructured sparsity.205 Under the context
of the dummy column-based deployment scheme, quantization-
aided structured pruning enhances the model’s robustness to
thermal variations.
In practice, quantization digitizes each floating-point weight

element to the nearest quantization level. In the meantime, the
Lasso group penalizes the weights in a structured manner.
Although the unimportant groups will be collectively quantized
to zero, the granularity mismatch between pruning and
quantization introduces the residual nonstructured zeros inside
the weight distribution. The residual element-wise sparsity will
further degrade the model’s robustness during CIM. Motivated
by this, a robustness-aware structured pruning algorithm,
minimizing the residual element-wise sparsity with a global
penalty threshold, leading to comprehensive pruning candidate
selection and accurate group-wise pruning, was proposed. Figure
16b demonstrates the overall flow of the proposed algorithm.
Together with the progressive knowledge distillation (PKD)
and batch normalization adaptation (BNA) scheme,206 the
proposed algorithm maintains >92% and >90% inference
accuracy for ResNet-18 and VGG-8 models, respectively, as
shown in Figure 16c−f. Along with the robustness enhancement,
the proposed scheme also compresses the dense ResNet-18 and
VGG-8 models by 24.5 and 24.9×, respectively.

4.3. Design Exploration with Analog Noises for a
Computing System. The objective of the hardware−software
codesign for analog resistive memory is to deal with the impact
of nonidealities of resistive memory on computing performance.
Resistive memory mainly suffers from nonidealities. The first
one is programming variation when their resistance is changed,
which is also accompanied by large programing energy and
duration compared to transistor switching. The second one is
the read noise or the conductance fluctuation when the bias
voltage is smaller than the programming threshold. These
nonidealities may outweigh the energy-area efficiency advan-
tages thanks to in-memory computing in some application

scenarios.50 As a result, the application and the hardware−
software need to be designed in a manner that can either
leverage or mitigate these nonidealities. The following Table 1
summarizes some of the initiatives along this direction, which
are discussed in detail in the following.

Hardware−Software Codesign That Leverages the Read
Noise. Combinatorial optimization can leverage the intrinsic
read variation of resistive memory to prevent the system from
being trapped in a local minimum during the evolution to the
global minimum. For example, a frequently employed technique
in simulated annealing is to inject noise of decaying amplitude,
equivalent to the lowering of the annealing temperature. To
implement that, hardware-wise, heuristic threshold neurons207

and weight scaling208 can achieve run-time temperature scaling.
In addition, the effective temperature can also be modulated by
the strength of self-feedback in a dynamic system, such as the
diagonal resistive memory elements in a hardware recurrent
network.209 Software-wise, simulated annealing algorithms
using Hopfield neural network207,209 or Boltzmann machines208

have been devised, with application to representative
combinatorial optimization problems such as graph partition.

Hardware−Software Codesign That Leverages the Pro-
gram Noise. Neural networks of random features, such as echo
state networks and extreme learning machines, turn program-
ming noise into an advantage. Such networks are favored in edge
learning due to largely reduced training complexity, which
complements memristive systems practicing local learning
rules.210,211 To implement these networks, hardware-wise, the
programming stochasticity of the resistive memory will be used
to produce random and fixed conductance matrices, serving the
weights of random projections in those networks (see Figure
17a). Software-wise, the echo state graph neural network212 has
been introduced for graph-structured data learning at signifi-
cantly reduced learning cost and improved efficiency, with
applications from social networks to drug discovery. Notably,
such an echo state graph neural network can serve as the graph
feature extractor when combined with a trainable projection
layer and associative memory, forming a memory-augmented
graph neural network for few-shot graph learning.213 In addition,
pairing echo state network-based temporal feature extractors
with random convolutional-pooling architecture-based spatial
feature extractors can naturally learn spatial−temporal signals at
low cost.214

Bayesian inference may also exploit the programming
variation of the resistive memory. Hardware-wise, the 1-
transistor-1-resistive memory (1T1R) array allows physically
implementation of the proposal distribution using the cycle-to-
cycle and device-to-device programming variation of resistive
memory.215 Software-wise, the Metropolis-Hasting Markov
chain Monte Carlo (MCMC) sampling has been used for
both supervised classification and reinforcement learning
classical control problems.215

Cybersecurity may use the programming stochasticity of
resistive memory. Hardware-wise, the electrical responses of a
resistive memory crossbar with intrinsic programming variation
and nonlinearity to external bias cannot be duplicated, thanks to
the underlying ionic nature of resistive switching which serves as
the source of entropy216 (see Figure 17b). Software-wise,
memory-based physical unclonable function enables down-
stream applications such as authentication.216

Hardware−Software Codesigns That Withstand Noises.
Hyperdimensional computing is an emerging neutrally inspired
method for representing and manipulating data in a high-

ACS Nano www.acsnano.org Review

https://doi.org/10.1021/acsnano.3c03505
ACS Nano 2023, 17, 11994−12039

12010

www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.3c03505?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


dimensional space. To implement that, hardware-wise, resistive
memory array with in-memory search capabilities has been
demonstrated.217,218 Since high dimensional vectors are mostly
orthogonal using the random basis, it naturally mitigates the
impact of weight imprecision of the resistive memory. Software-
wise, the hyperdimensional encoder and associative memory
have been used in supervised classification and few-shot learning
of images.217,218

Linear system solving is the basis of scientific computing. To
accelerate linear system solver, hardware-wise, a hybrid analog-
digital system was developed to combine the high efficiency of
analog computing and the high precision of digital computing.
This allows operations of different precision demanding to be
deployed on different platforms219 (see Figure 17c). In addition,
multiple resistive memory cells can be used to represent a matrix
element at higher precision.220 Software-wise, iterative refine-
ment algorithm using an inner conjugated gradient solver have
been implemented on the digital and analog platforms,
respectively, for applications such as partial correlation.219

Moreover, Newton’s method has been used for solving partial
differential equations.220

Future Perspectives. The pioneering exploration of hard-
ware−software codesign so far has well illustrated the advantage
of analogue in-memory computing in multiple important
branches of computing. To move further, the controllability,
such as the tunable range of the read and programming noise, as
well as the programming energy and duration are the parameters
to be optimized to practically parallel or even exceed the digital
counterparts.

5. COMPUTING-IN-MEMORY SYSTEM FOR AI
ACCELERATORS

5.1. Development of Computing-in-Memory Based AI
Accelerators. There is significant interest in developing
custom accelerators for deep learning inference. Most of the
research and commercial effort is centered on digital
accelerators that optimize the computation and dataflow
specifically for inference applications. Digital accelerators
typically contain arrays of processor elements (PEs) that can
perform several MVM operations in a pipeline-parallel fashion.
However, despite all the advances, empirical evidence based on
commercial AI accelerators indicate plateauing of energy
efficiency at 10 TOPS/W or 100 fJ/Operation.221 This is
attributed to the energy costs associated with data movement, as
indicated in Figure 18a. MVM operations cost tens of fJ whereas
accessing on-chip SRAM costs about 1pJ/byte. Even with
significant weight reuse, each MVM operation comes with
significant memory access overhead.222 A promising compute
paradigm that aims to address this is analog CIM.223−235 The
essential idea is to fabricate a weight stationary array of synaptic
unit cells based on ultradense memory devices (see Figure 18b).
Each unit cell holds one synaptic weight that can remain
stationary for many inferences. The MVM operations
themselves are performed by exploiting physical attributes
such as Kirchhoff’s circuit laws or capacitive charge sharing. CIM
based AI accelerators improve AI inference energy-efficiency in
three ways. First, it performs computation directly inside
statically stored weights of AI models, thus eliminating energy-
consuming data movement of weights from memory to separate
compute units. Second, in conventional memory, data is read
one row at a time. Each time, column precharge energy and
sense-amplifier analog-to-digital conversion energy are incurred.
In CIM, however, both column precharge and analog-to-digitalT
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conversion are performed only once. Therefore, energy spent
inside the array is reduced. Finally, depending on specific
implementations of CIM, analog multiply accumulate oper-

ations performed by memory cells and metal wires can be more
energy-efficient than digital counterparts performed by logical
gates.

Figure 17. Hardware−software codesign for resistive memory-based analog computing. (a) Schematic illustration of the architecture of a
resistive memory-based echo state graph neural network handling CORA data set.212 (b) Schematic illustration of the analog random resistive
memory-based physical unclonable function for authentication.216 (c) Schematic illustration of the iterative refinement algorithm with
conjugate gradient solver implemented on the hybrid analog-digital computing system for solving systems of linear equations.219 Reprinted
with permission from ref 50. Copyright 2023 and 2018 Springer Nature, respectively.

Figure 18. (a) The energy efficiency of conventional digital accelerators for DNN acceleration tends to plateau at hundreds of fJ/operation due
to the energy costs associated with shuttling around the synaptic weights. (b) Analog in-memory computing with fixed-synaptic weights could
address this challenge. Memristive devices with potential for ultradense integration density are promising candidates for AIMC. (c) The
development trend of system completeness and diversity of the CIM systems. Reprinted with permission under a Creative Commons CC BY
License from ref 238. Copyright 2017 Springer Nature. Reprinted with permission from refs 240, 241. Copyright 2020 IEEE and 2020 Springer
Nature, respectively.
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A prominent candidate for CIM is an approach based on
SRAM cells and switched capacitors that is almost ready for
commercialization. However, the primary drawback is that
SRAM-based unit cell arrays are not dense enough to hold all of
the weights of a large DNN due to chip area constraints. This
would necessitate frequent DRAMaccesses. Compared with this
approach, memristive devices could offer much higher weight
density. Moreover, the nonvolatile storage capability facilitates
power cycling of the accelerator. All the demonstrations to-date

that are silicon verified are based on resistive memory
technology such as PCM,224,236 and metal-oxide based
ReRAM.225 Flash memory-based CIM which is closer to
commercialization could also afford higher weight density.226

However, compared to Flash, the back-end integration
capability of memristive devices ensures that one could exploit
more advanced CMOS technology nodes.
The development of the CIM system experienced three

periods, according to the completeness and diversity of the

Figure 19. Software tools of CIM systems. (a) The typical hierarchy of the CIM architecture in the simulator. Reprinted with permission from
ref 242. Copyright 2021 IEEE. (b) The nonideal factors and functional modules of the memristor-based macro circuit. Reprinted with
permission from ref 244. (c) The schematics of physical mechanisms of reliability degradation in the memristor device. Reprinted with
permission from ref 245. Copyright 2021 IEEE. (d) The compilation flow of the CIM hardware. Reprinted with permission from ref 247.
Copyright 2018 IEEE. (e) The deploying strategy for improving throughput. Reprinted with permission from ref 248. Copyright 2021 IEEE.
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system. As shown in Figure 18c, the diversity means how many
kinds of computing tasks the system can support, and the
completeness means whether the system contains all the
necessary functional modules. The first period focused on the
array level demonstration with a small-scale memristor
array.237−239 For example, Patrick et al. demonstrated a sparse
coding task with a 32 × 32 passive crossbar,237 and Yao et al.
demonstrated face recognition with a 128 × 8 1T1R array.238

The second period transferred to macro circuit design and
multiarray system construction. During this period, the
integration density of the memristor devices increased fast and
more functional modules were included. The modules mainly
concentrated on analog circuits for supporting the computing
process, like ADC, special function units, etc. Liu et al. reported a
monolithic integrated ASIC chip, which integrated two
memristor arrays up to 160 Kb density and supported complete
MLP inference on chip.240 Yao et al. demonstrated multilayer
CNN on a fully hardware implemented system with eight 2 Kb
memristor arrays and all the necessary analog circuits, while the
digital parts were realized with an integrated FPGA.241 During
the third period, researches started to explore fully parallel on-
chip neural network inference.224 Wan et al. developed a
multicore CIM chip to perform diversity tasks with high
accuracy.225 Recently, IBM reports a multicore CIM chip with
complete on-chip routing solution,228 making important
progress on the completeness of the CIM system.
To construct a practical CIM system, the correlated software

ecology should be developed in addition to the efforts on the
hardware part. At present, studies on the software level mainly
include two aspects: hardware simulation and algorithm model
deployment, as shown in Figure 19. Simulation software aims to
model and analyze the hardware behaviors from the device level
to the circuit level and to the system level. With the simulation
software, design guidelines for each level can be provided.
System level simulation tools can model the timing, data
scheduling, resource occupancy, etc. Jiang et al. developed a
high-level architectural simulator to model the timing and
resource of each module, like bus, buffer, and computing array,
under the real working scenes.242 Lee et al. designed a clock-
accurate simulator to model the effects of various NoC
structures on the performance of a multicore system.243 Circuit
level simulation tools aim to estimate the power consumption,
speed, area, and computing accuracy of circuit modules or the
whole chip. Zhang et al. developed a complete algorithm to
device simulator to benchmark the influence of array size, input
voltage, ADC precision and nonideal effects.244 Peng et al.
proposed an end-to-end simulator for both training and
inference.93 This simulator considers all the nonideal effects of
the memristor devices and arrays. Device level simulation tools
focus on the physical mechanisms of I−V characteristics,
retention, endurance, etc., and the influence of these behaviors
on computing accuracy. Liu et al. developed a compact model
for the reliability characteristics of memristors, and embedded
the model into circuit level simulation tools.245 Gao et al.
constructed a kineticMonte Carlo tool to model the distribution
of oxygen vacancies during resistive switching process.246 On the
other hand, deployment software aims to link algorithm
applications to the CIM hardware and map the model
parameters to the real circuits. Deployment software decides
how much the performance and resources of CIM hardware can
be utilized. Ambrosi et al. developed an Open Neural Network
Exchange (ONNX) software stack for algorithm compiling, as
well as an instruction set for decoupling the algorithm

development and hardware design.247 Zhang et al. proposed a
convolutional kernel duplication method to enhance the
throughput of different algorithm models.248 Peng et al.
proposed a weight placement method to increase the reuse
rate of input data,249 which can also enhance the throughput.

5.2. Passively Integrated Memristor Crossbar Array
without Select-Transistors. Lateral dimensions of some
emerging memory devices could be scaled to below ten
nanometers without sacrificing their analog properties and
retention.250 The density of stand-alone memory devices can be
sustained at the circuit level by passively integrating them into
crossbar arrays.251−267 The monolithic (passive) vertical
integration allows further increasing effective density.252−256,268

Such 3D circuits would enable, for example, much higher
performance neuromorphic computing hardware because large
neural models can be entirely stored on a chip thus avoiding
energy-taxing and slow off-chip communications.251,269

In the previous decade, there has been a significant effort in
developing passively integrated memory crossbar cir-
cuits,27,40,115,237,251,255,257,259−267 with industry primarily focus-
ing on simpler memory applications.252−254,258,270 For example,
the published results supported with proper crossbar array
statistics include metal-oxide filamentary253,255,256,262,263 and
interfacial,237,257 solid-state-electrolyte,258,271 and 2D-material
memory devices.40 However, the focus now hasmainly shifted to
sparser, actively integrated (“1T1R”) memristive crossbar
circuits in which each memory device is coupled with a “select”
transistor.19 The primary reason is the much more demanding
requirements for device technology in passively integrated
circuits.
Indeed, in active crossbar memory circuits, the select

transistor and additional control lines simplify access to each
cell in the array (Figure 20a). A voltage can be applied to and the
current measured from a “selected” memory cell while ensuring
zero biases and currents via all other cells. Furthermore, the
select transistor could be used as a current compliance for
precise conductance tuning. In passive (“0T1R”) crossbar
circuits (Figure 20b), a selected cell is directly connected to a set
of “half-selected” cells sharing the same electrodes, and
indirectly connected (via half-selected cells) to all remaining
cells in the array. In the most typical “half-biasing” scheme used
for writing the selected cell, half of the write voltages of
appropriate polarity are applied to the selected cell’s electrodes,
while all other electrodes are biased to zero (Figure 20b). The
first challenge in the such scheme is “sneak-path” currents via
half-selected cells. Sneak-path currents increase with scaling up
crossbar dimensions and could result in non-negligible IR drops
on the electrodes and hence inaccurate operation. This problem
is especially bad for forming and write operations because of
much larger applied voltages. The second, more serious
challenge is due to variations in memristors’ effective switching
threshold voltages. Half-selected cells receive half of the write
voltage of the selected cell. With large device-to-device
variations, such voltage may be large enough to disturb the
state of the half-selected memristors (Figure 20c) making
accurate conductance tuning in the whole array challenging. The
disturbance is especially bad for the half-biased memristors with
lower switching thresholds, when a larger write voltage must be
applied to the selected memristor with a higher switching
threshold.
Increasing crossbar array dimensions is critical for reducing

the area overhead of peripheral circuits. Practical dimensions
vary for different applications and, e.g., are around a hundred for
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some neuromorphic inference applications.251,269 However,
increasing crossbar array dimensions exacerbates the already
discussed half-select disturbance and IR drops. A general
solution for the latter problem is to decrease currents via
memristors, i.e., making the resistance of the electrode lines
negligible to those of the crossbar array’s crosspoint devices.
Another solution is to utilize “1D1R” circuits260 based on
memristors with rectifying I−V characteristics. In a related
“1S1R” approach, a memory cell is connected with a highly
nonlinear two-terminal selector device, such as the ovonic
threshold switch in Intel’s 3DXpoint technology.270 A common
strategy for improving device uniformity in filamentary devices is
to constrict the electrical and ionic currents during forming step,
e.g., by specifically engineering electrodes with protrusions or
wedge shapes272 or creating a special opening for ion
transport.273 A more advanced approach of engineered

threading dislocations resulted in the smallest variations
reported for the integrated crossbar circuit based on filamentary
devices.115 Interfacial memristors typically feature better device
uniformity over filamentary ones due to the nonlocalized
switching mechanism.261 However, improvements in uniformity
may be achieved at the cost of sacrificing analogue properties
and retention. For example, a lower energy barrier for memory
mechanism (and hence lower retention) is typical for interfacial
and solid-state electrolyte memristors and devices with
submicroamp-level write currents. Moreover, the devices with
sharp I−V nonlinearity (such as in 1S1R devices270) are not
suitable for an implementation of an accurate product between
analog input voltage and device conductance.
This is why several recent studies were focused on filamentary

metal-oxide memristors, e.g., based on bilayer Al2O3/TiO2‑x
structures,251,264−266 that have excellent analog properties and
retention and can be scaled to below 10 nm.250 For example,
larger crossbar dimensions in ref 251 (Figure 21a) over prior
work262,263 were achieved by optimizing memristive devices and
substantially decreasing electrode resistances with improved
fabrication process. Specifically, Al2O3 tunnel barrier thickness
was optimized to achieve linear device I−Vs at smaller
nondisturbing voltages, which is crucial for accurate in-memory
computing, and mild nonlinearly at higher voltages to reduce
sneak-path currents during forming and write operations
(Figure 20c). The electrode resistance was lowered by using
higher-conductance metals and thicker and more planar
geometry by adopting industrial CMOS patterning processes.
The improved electrode conductance allowed increasing
preforming device conductances, which was achieved by
increasing oxygen vacancy concentrations, without running
into IR drop problems. That, in turn, led to lowering of forming
voltages and hence less damaging, more controllable filament
formation process and ultimately more uniform device-to-device
I−V characteristics. The improved device uniformity allowed
programing ∼99% crossbar array memory devices with an
effective 4-bit precision (Figure 21b).
In summary, passive crossbar memory circuits enable much

higher integration densities, which would be crucial for memory
and in-memory computing applications. However, such
technology is much more challenging compared to actively
integrated crossbar circuits. The further advances in passive
crossbar memory circuits technology would likely largely
depend on the progress in its active counterparts, specifically
from improvements in device uniformity and lowering of device
currents that is desired for reducing select transistor overhead.

5.3. Fully Integrated Multicore CIM Chips. For
memristor-based AI accelerators to be broadly adopted, CIM
systems need to support a wide range of AI tasks while achieving
software-comparable inference accuracy. However, the same
factors that make CIM energy-efficient also make it challenging
to simultaneously be reconfigurable and accurate. For instance,
due to the high programming cost of today’s resistive RAM
devices, the statically stored weights cannot be reconfigured for
different neural network layers during inference; similarly, the
robustness of analog computation is prone to device and circuit
nonidealities, which leads to accuracy loss. To address this trade-
off between efficiency, reconfigurability, and accuracy, Wan et
al.225 demonstrated the NeuRRAM chip (Figure 22a).
NeuRRAM integrates 48 CIM cores with a total of 3 million
RRAM devices. It simultaneously realized high energy-
efficiency, reconfigurability to support diverse AI model
architectures including convolutional neural networks

Figure 20. (a, b) A typical half-biasing scheme for applying write
voltages to the selected memristor in (a) active (“1T1R”) and (b)
passive (“0T1R”) crossbar circuits. For clarity, both panels show a
four-device crossbar circuits. In 0T1R arrays, a half of the voltage
applied to the crossbar array to write the selected (“B”) device is
dropped across the half-selected (“A” and “D”) devices that share
the same horizontal and vertical electrodes with the selected device.
In 1T1R circuits, the select transistors and additional lines
controlling them allow applying a nonzero voltage across the
selected device only. (c) Typical I−V hysteretic curves for metal-
oxide memristors for the symmetric voltage sweep (lower bottom
inset). The inset histograms show schematically device-to-device
variations in switching voltages at which conductance changes by
more than a certain amount. (Note that there is no sharp threshold
for switching; in principle, the switching thresholds would depend
on the voltage ramp rate. In that sense, the thresholds are instead
“effective” values representative of the intended device usage.) To
highlight half-select disturbance problem, the black I−V curve
corresponds to the selected device “B” with a switching threshold at
the higher end of the distribution. Setting such device can disturb
the half-selected device “A” featuring the red I−V curve with a
switching threshold at the lower end of the distribution. Reprinted
with permission from ref 251, 274. Copyright 2018 Springer Nature.
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(CNN),275 long short-termmemory (LSTM),276 and Restricted
Boltzmann Machine (RBM),277 and software-comparable
accuracy across various AI benchmarks. Importantly, while

most AI benchmark results reported in previous studies were
obtained by using a hybrid of software simulation and hardware
measurement, all results reported in this work were measured

Figure 21. (a) Scanning electron microscope image of 64 × 64 crossbar array with passively integrated Al2O3/TiO2−x memristive devices. The
top left inset shows a zoomed-in portion of the crossbar array. The bottom left and bottom right insets show material layers at the device cross-
section with corresponding thicknesses in nanometers and the packaged chip. (b) The results of tuning crossbar memristors’ conductance to
the target values corresponding to a gray scale quantized image of Einstein using a write-verify automated algorithm with a 5% relative error,
defined as an absolute difference between target and desired conductances, normalized to the desired conductance. Black squares show devices
that could not be switched with the chosen maximum write voltages. Reprinted with permission under a Creative Commons CC BY License
from ref 251. Copyright 2021 Springer Nature.

Figure 22. (a) NeuRRAM chip micrograph (b) NeuRRAM core block diagram. (c) Transposable Neurosynaptic Array architecture physically
interleaves RRAMweights and CMOS neurons. (d)Measured inference accuracies onNeuRRAM are comparable to those achieved by software
models with 4-bit weights. Reprinted with permission under a Creative Commons CC BY License from ref 225. Copyright 2022 Springer
Nature.
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directly from hardware. Previous CIM chips typically only
support MVM in a single direction by hard-wiring input DACs
to the rows and output ADCs to the columns or vice versa. Such
a design cannot performMVM in the reverse direction (i.e., with
transposition of the weight matrix), which is needed for models
such as RBM or computing backward gradient during the back-
propagation training. NeuRRAM implements a transposable
neurosynaptic array architecture (TNSA) that allows the
dynamic reconfigurability of MVM directions with minimal
energy or area overheads. Unlike conventional CIM designs
where ADCs are at the periphery of memory array, TNSA
physically interleaves RRAM weights and ADCs and connect
them through bidirectional pass gates (Figure 22b, c). It allows
DAC inputs and ADC outputs to be sent and received in any
arbitrary directions inside the array. Despite being fabricated at
an older technology node, NeuRRAM can achieve a 2 times
better energy-delay product, a commonly used metric for
energy-efficiency, than previous RRAM-CIM chips. The benefit
comes from a voltage-sensing scheme for in-memory MVM.278

The conventional current-sensing design is to use voltage as
input and measure the current as the results are based on Ohm’s
law. Such a design has limited parallelism and energy-efficiency
due to a large array current. The voltage-sensing scheme of
NeuRRAM keeps output lines floating during MVM and
measures the settled open-circuit voltage on the output lines.
The design eliminates power- and area-consuming peripheral
circuits, such as voltage clamps and current mirrors. It also
allows simultaneous activation of all rows and columns, thus
realizing the maximum parallelism.
To mitigate the impact of hardware nonidealities on inference

accuracy, Wan et al. proposed a series of algorithm-hardware co-
optimization techniques.225 They include (1) model-driven
hardware calibration that calibrates hardware using real data
from training data sets, (2) nonidealities-aware training that
statistically models hardware nonidealities during model
training, and (3) chip-in-the-loop progressive fine tuning that
uses the chip to perform the forward-pass of fine-tuning such
that the model adapts to individual chips’ characteristics.
Together, these techniques enable NeuRRAM to achieve
comparable inference accuracy to software models (with 4-bit

weights) across various AI benchmarks, including CIFAR-10279

and MNIST280 image classification, Google speech common
recognition,281 and a Bayesian image recovery task (Figure 22d).
Figure 23 shows a compute core that is based on PCM

embedded in an advanced 14 nm CMOS technology
node.227,228 Compact current controlled-oscillator-based
ADCs allow the MVM operation to be executed at constant
time complexity without requiring any time-multiplexing, since
the pitches of the ADCs and the unit cells match. Despite the
integration of the PCM element at a relatively high position in
the metal stack, a throughput density of 1.59 TOPS/mm2 is
achieved. It is conceivable that by integrating the PCM devices
closer to the transistor-level at a denser pitch substantially higher
compute density can be achieved.
In fact, compute density is one of the most desirable attributes

for memristive CIM-based DNN accelerators. It would be a
critical breakthrough if we could conceive memory devices that
could provide the ability to hold large DNNs in a reasonable die
size without ever having to fetch the synaptic weights from
DRAM. There is significant commercial opportunity in
developing discrete accelerator chips that could run very large
neural network models at a power budget unthinkable with
state-of-the-art solutions. Yet, maintaining high performance
and energy efficiency at the application level requires careful
optimization of the system architecture. Recently, it was shown
that a highly heterogeneous and programmable CIM accelerator
architecture featuring spatially distributed CIM tiles, a dense and
flexible 2Dmesh-based interconnect with massively parallel data
bus, and special-function digital cores can support inference of a
variety of large models with high energy efficiency.229 Moreover,
the architecture could be enhanced with custom digital
functionality to achieve a constant and high throughput
regardless of the batch size, potentially attractive for
throughput-critical applications.230

Another commercial opportunity for CIM is the space of
embedded systems, where CIM tiles can be used alongside
programmable processors to enhance the operational flexibility.
In such architectures, the CIM tiles could hold the synaptic
weights and perform MAC operations whereas the processor
could handle the residual digital operations, data management

Figure 23. (a) Schematic of the PCM based crossbar array associated with the IBM HERMES project chip. It comprises 256 × 256 array of
synaptic units.227 (b) Each synaptic unit cell comprises 4 PCM devices onto which the synaptic weights are mapped in terms of the analog
conductance value of the devices arising from the underlying phase configuration of the devices.228 (c) Backend of the line integration of PCM
devices.227
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and control.231 Moreover, a tighter integration between the
processor and CIM tiles could be envisaged where the processor
uses an instruction set extension to access CIM tiles.232

One key challenge for CIM-based DNN accelerators is
achieving no or minimal accuracy loss in comparison with high
precision digital accelerators. Existing compute precision when
using analogue encoding of synaptic weights on a single device is
equivalent to 3−4-bit fixed point arithmetic. It is expected that
with improved devices,233 programming algorithms,234 and
synaptic architectures,235 this could be improved significantly.

6. OTHER APPROACHES OF MEMRISTIVE
TECHNOLOGY

6.1. In Sensor Computing and 3D Heterointegration.
According to the projection by Semiconductor Research
Corporation and Semiconductor Industry Association, the
number of sensor node exponentially increases with the
development of Internet of Things. By 2032, the number of
sensors is expected to be ∼45 trillion, which will generate >1
million zettabytes (1027 bytes) of data per year.282 The massive
data from sensor nodes obscure valuable information that we
need it most. Abundant data movement between sensor and
processing unit greatly increases power consumption and time
latency, which poises grand challenges for the power-constraint
and widely distributed sensor nodes that are required in the
Internet of Things. Therefore, it urgently requires a computation
paradigm that can efficiently process information near or inside
sensors, eliminate the redundant data, and reduce frequent data
transfer. The manufacturing technology of sensors and
processing units is quite disparate, which unavoidably leads to
physical separation between the two units. The data transfer
between them inevitably causes a time delay and power
consumption. Researchers have adopted advanced packaging
technique or monolithic integration to reduce their physical
distance, which is the so-called near-sensor computing
technology.283 To fuse the functionalities of sensor and
computation units, scientists have demonstrated the multiple
devices with both sensing and computing functionalities for in-
sensor computing that avoids the data transfer outside the
sensors.283−292 Based on the response characteristics of the
sensors, different computation functionalities can be real-
ized,293−296 as shown in Figure 24.
Vision sensors are a good example to illustrate in-sensor

computing. Vision is the dominant source for humans to collect

information from the external environment.297 Optoelectronic
conversion is an indispensable process in image sensing, which
also constitutes abundant information reconstruction and
reorganization. The use of optoelectronic devices for image
sensing and information processing provides a way for in-sensor
computation of vision information. In response to the intensity
of light stimulation, the sensors can show linear and nonlinear
response characteristics, which allows us to realize feature
enhancement or image recognition within in a sensor array.294

For the sensors with linear response characteristics, they can be
adopted for computation with an artificial neural network. The
implementation of machine learning algorithms mainly consists
of multiplication and summation. Optoelectronic conversion
can be used for the hardware implementation of the multi-
plication function Iph = R × P, where Iph is the photocurrent, R is
the photoresponsivity, and P is the power intensity of light
stimulation. The photoresponsivity of the photosensors can be
continuously modulated by gate voltage, emulating the synaptic
weight in an artificial neural network. By connecting a number of
photosensors in series, the summation can be executed
according to Kirchhoff’s current law. Mennel et al. reported
this proof-of-concept demonstration with two-dimensional
semiconductors, exhibiting the ultrafast image recognition at
the level of nanosecond.288 Jang et al. extended this in-sensor
computing strategy with mature Si technology at a large-scale.295

The nonlinear response characteristics of photosensors can
reconstruct the light stimuli, which provides alternative ways for
processing visual information. For the sensor with superlinear
response characteristics, strong light stimuli can produce high
photoconductance, while the weak light stimuli generate only
negligible photoconductance. Thus, the sensor array can
enhance the feature of the image and reduce the background
noise. The photoresponsivity of photosensor can be also
modulated over a large range to adapt different light stimuli,
exhibiting sublinear response characteristics.290 This design can
be used for in-sensor vision adaptation under different lighting
conditions (Figure 25a). For the sensors with threshold
response characteristics, we can use it for the nociceptor that
can respond to the stimuli beyond a certain threshold.298,299

To achieve low latency and high energy efficiency in real-time
AI applications, it is essential to eliminate unnecessary data
movement and promote parallel data processing.256,300,301

Three-dimensional heterogeneous integration (3DHI) utilizes
high-density, reduced surface area to seamlessly integrate

Figure 24. Different sensory response characteristics for in-sensor computing. (a) Linear response characteristics can provide high precision of
in-sensor computing with artificial neural networks. (b) Nonlinear response characteristics of sensors, including superlinear (black), sublinear
(red), and threshold (blue), can output intensity-dependent information, which allows to encode spatiotemporal information and enrich
computation functions at sensory terminals. Reprinted with permission from ref 293. Copyright 2022 Springer Nature.
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different functional layers such as sensors, processors, and
memory.302−309 Since 3DHI can process large amounts of data
obtained from sensor networks with high bandwidth and low

latency, efficient sensory data processing can be achieved by
combining 3DHI with in-sensor/near-sensor computing
architectures.283 However, challenges related to modality,

Figure 25. Examples of in-sensor computing and heterointegration with sensors (a) Bioinspired in-sensor vision adaptation using the sensor
with sublinear response characteristics. Reprinted with permission from ref 290. Copyright 2022 Springer Nature. (b−d) Stackable
Heterointegrated Chips for Reconfigurable Neuromorphic Computing. (b) A schematic illustration of the conventional 3D heterogeneous
integration (3DHI) for sensor-computing system with hardwired connections. (c) Schematics of stackable heterointegrated chips with chip-to-
chip light communication for reconfigurable sensor-computing system. (d) Schematic representation of the stackable heterointegrated chip.
Illustration and SEM images of optoelectronic device stack (LED/PD, red dotted box), top-right scale bar: 100 μm, bottom row scale bars: 1
mm, and side view of chips (LED/PD/substrate, purple dotted box), scale bar: 1 μm. Illustration and SEM images of neuromorphic computing
core (Ag−Cu alloy-based Si memristor crossbar array, blue dotted box), scale bar: 100 μm. For the optoelectronic device stack, we fabricated an
array of LED/PD stacks and aligned them with backside holes using deep reactive ion etching (DRIE). For the neuromorphic computing core,
we fabricated 32× 32memristor crossbar arrays as shown in schematic and a SEM image. Three different types of 3× 3 kernel operations (edge
detection, sharpen, and soften) are performed. Reprinted with permission from ref 320. Copyright 2022 Springer Nature.
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materials, data processing, and computing architecture limit the
development of 3DHI. Regarding materials, the number of
layers that can be stacked is limited because intimately
connected layers affect each other.310−314 Normally, this
requires costly processes such as wafer bonding or transfer-
printing.314−316 Regarding modality, only one sensory modality
can be accommodated per one fixed sensor connected to the 3D
chip.317 Regarding data processing, additional processors cannot

be added to a fixed 3D chip for various computing environments
such as a highly noisy or mixed-precision processing environ-
ment.219 Regarding computing architecture, most of the
heterogeneous chips developed to date are based on conven-
tional von Neumann architecture, which does not fully utilize
high bandwidth area interfaces for parallel data processing. This
issue could be solved by using neuromorphic computing
architecture.285,288,318,319 The other issues, however, cannot be

Figure 26. A memFPAA mixed-frequency signal classifier. (a) Schematic of the classifier circuit consisting of a bank of cascaded high and low
pass filters, serving the role of the basilar membrane of the human hearing system, followed by a 4 × 6 VMM as synaptic array with 6 neurons
implemented by TIAs and peak detectors. (b) 6 different temporal input patterns (P1−P6), each of which is the composition of two sinusoidal
waves of different frequencies (from the left, 20 Hz + 200Hz, 20 Hz + 2 kHz, 20 Hz + 20 kHz, 200Hz + 2 kHz, 200 Hz + 20 kHz, and 2 kHz + 20
kHz). (c) Measured conductance map of the 4 × 6 VMM synaptic array. (d) Measured output peak voltages of the postsynaptic neurons to the
input patterns. Each individual input pattern is associated with a response of the output artificial neurons. (e) The temporal output responses of
the 6 output neurons N1−N6 to input pattern P4. The red signals are voltages measured after the TIAs and the blue signals are voltages
measured after the peak detectors. Reprinted with permission under a Creative Commons CC BY License from ref 328. Copyright 2022 John
Wiley & Sons.
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solved without having the ability to rearrange and reconfigure
each layer in the 3D chip stack.
One potential solution to the aforementioned issue is to

utilize 3DHI with embedded neuromorphic computing crossbar
arrays, where each heterogeneous chip layer can be stacked and
reconfigurable by chip-to-chip light communication. An array of
optoelectronics enables chip-to-chip light communication,
which makes it possible to replace, insert, stack, and restack
chip modules with various functionalities.320 A stackable
heterointegrated system with embedded neuromorphic AI
chips and optoelectronics, including photodiodes and light-
emitting diodes (LED) is depicted in Figure 25b−d. As shown in
Figure 25b, the hardwire-connected conventional 3DHIs still
have significant drawbacks; however, stackable heterointegrated
chips have several advantages over them. Like a Lego block,
every AI- and optoelectronic-embedded layer allows us to (i)
replace either the processor or the sensor, depending on the
need for either sensing or computing, (ii) stack different layers to
improve or reconfigure neural networks, and (iii) add or remove
layers to optimize the processing function (Figure 25c).
Examples of the aforementioned cases are as follows: (i) a
variety of sensors could be readily replaced, or different
pretrained computing layers could be replaced to process
different sensory inputs; (ii) pretrained computing layers could
be continuously stacked for highly parallel kernel operations to
detect varying and various signals from sensor layers; and (iii)
computing layers can be added to manage more complex
computing requirements or removed to perform lighter
computing tasks. As a result, stackable heterointegrated chips
can be customized depending on the purpose of the chips and
the sensing modality. In other words, functional layers can be
reconfigured easily due to chip-to-chip light communication.
The stackable heterointegrated chip enables various neuro-
morphic sensors and processors to be seamlessly integrated. In
addition to that, the stackable heterointegrated chips provide a
high degree of freedom for tailoring near-sensor computing
design and high versatility in edge computing. Despite the
advantages of stackable heterointegrated chips, there is a very
important issue to solve, alignment of each chip. Precise
alignment between chips is critical for heterogeneous chip
module integration because misalignment has a significant
impact on the speed, energy efficiency, and crosstalk of light
communication. As a result, for practical application, high-
precision alignment techniques that do not require micro-
manipulators should be developed. For example, additional
macro patterning of V-grooves via anisotropic etching of the
silicon substrate can be used as a self-alignment scheme.321,322

Such a structure will enable easy and accurate alignment by
hands. Other passive alignment strategies including optical
plugs, ferrules, and fiber-arrays can also be used for precise self-
alignment of the chips.323−325 These approaches will enable
stackable heterointegrated chips to be readily reconfigurable.

6.2. Analog Circuit Design Based on Memristor Arrays.
Analog computing, which operates on continuous signals in real-
time, has been an important computational paradigm since the
advent of electronics. However, the advent of digital computing,
with its high accuracy, reliability, and ease of use, has caused
analogue computing to fall out of favor over the past few
decades. The world is analogous, where ubiquitous sensors have
led to an analog data deluge. Due to the notoriously energy- and
time-consuming conversion between analog and digital
domains, recent developments in big data and the Internet of
Things (IoT) have created challenges for digital computing to

process video/audio information, particularly in terms of energy
efficiency and processing throughput. As a result, analog
computing is now experiencing a resurgence in interest as a
potential solution to these challenges.12,50,239,326 Despite this
growing interest, the development of analog circuits has been
impeded by a lack of reconfigurable and scalable platforms for
fast analog circuit prototyping and verification, similar to the
widely used field-programmable gate arrays (FPGAs) for digital
circuits. This lack of infrastructure has slowed progress in the
field, particularly in comparison with the rapid advancements in
digital circuit technology. Recently memristors, nonvolatile
analog memory devices, have been utilized to design analog
circuits including analog content-addressable memories
(CAM)327 and field-programmable analog arrays (FPAAs),328

because of their fast-switching speed and multiple data storage
up to thousands of levels.5,329−332 Such memristor-based
analogue circuits can reduce the footprint required for analogue
circuitry while providing faster programming speeds and more
accurate performance with tunability.
The platform for a memristive field-programmable analog

array (memFPAA) has been recently demonstrated by Li et
al.328 A FPAA usually comprises a monolithic collection of
configurable analogue blocks (CABs). However, in this study,
memristive devices serve as core analogue elements, while
CMOS-based peripheral circuits are used. To investigate the
capabilities of the memFPAA, several analogue computing tasks
have been implemented, including band-pass filters, audio
equalizers, and an acoustic mixed frequency classifier. As
illustrated in Figure 26, the memFPAA is able to emulate the
biological hearing system. As the basilar membrane in the
human hearing system, which selectively resonates to audio
inputs with various frequencies, the band-pass filters together
with VMM synaptic array and peak detectors can selectively
differentiate specific frequency bands of the sinusoidal inputs. In
this case, the postsynaptic neurons receive the weighted sum of
signals from the band-pass filters, and the neurons connected to
the synaptic memristors with higher weights that match the
input signal frequencies will produce a larger output voltage.
This process closely resembles the biological process, where hair
cells detect basilar membrane vibrations and send signals to the
cerebral cortex. Furthermore, memristor-based FPAAs can be
integrated into large-scale circuits to operate either as a general-
purpose reconfigurable analog circuit or as an FPGA-like
platform that rapidly prototypes analog circuit designs. The
results of this study demonstrate the potential of memristive
devices for use in analog circuits.

6.3. Quantum Effects in Memristive Devices. The
development of device concepts and architectures that rely on
quantum effects can enable technologies for information
processing that impact the entire sector of electronics. Among
emerging technologies, memristive devices represent suitable
platforms for exploring quantum effects at room temperature in
air.31,333,334 By coupling ionics with electronics, these devices
can exhibit under appropriate operational conditions typical
features of quantum conductance, where conduction does not
followOhm’s law. In this conduction regime, the electron flow is
regulated by ballistic transport with a discrete number of modes
(or channels) that contribute to the overall conduction. This
occurs when the filament size of memristive devices is shrunk to
act as a constriction where the lateral size becomes comparable
with the electron wavelength, resulting in the formation of a
quantum point contact (QPC). In this framework, memristive
cells can be schematized as two electrodesA andB that behave as
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ideal electron reservoirs in thermal equilibrium and separated by
a narrow constriction of length L and width W (Figure 27a),
where the density of states can be calculated by considering the
case of a particle (electron) in a box with infinite walls (Figure
27b).31 In this case, conductance is quantized in multiples of the
fundamental quantum of conductance G0 = 2e2/h, as
theoretically described in the framework of the Landauer
theory.335 While in semiconductors the QPC is a mesoscopic
object due to the large Fermi wavelength, QPC in metallic
nanofilaments has necessarily atomic dimensions since the
Fermi wavelength is of the same order of magnitude as the
atomic separation. For this reason, the observation of quantum
effects in memristive devices is intrinsically related to the
capability of manipulating the filament morphology down to
nearly the atomic scale.
Pioneering works reported the formation of metallic QPC by

creating contacts with atomic-scale control of the distance
through mechanical positioning systems. This includes the
mechanically controllable break-junction technique,336 that
involves breaking/recontacting a metallic wire through piezo-
electric elements, and QPC preparation by contacting a metal
surface with Scanning Tunneling Microscopy (STM).337 As an
alternative, Terabe et al.338 reported the realization of atomic
point contacts by exploiting solid-state electrochemical
reactions, where atoms are manipulated through the applied
electric field without the need of any mechanical positioning
system. Similarly, quantum conductance effects arising from
electrochemical phenomena responsible for the formation/
rupture of nanofilaments were later observed in the nanogap of
atomic-switch devices22 and in gapless metal-insulating-metal

memristive cells.31,333,334 While the filament morphology in
memristive cells can be manipulated through the applied voltage
that drives the formation/rupture of the filaments, it is worth
mentioning that also additional supportive and destructive
forces including corrosion, Joule heating and oxidative/
corrosive action of the surrounding matrix contribute to
determining the filament morphology.31 In this context, it is
important to remark that point contact conduction related to the
formation of voltage-induced atomic-size conduction channels
have been already observed in late 90s during the breakdown of
MOS devices.339

In the framework of memristive devices, evidence of the
formation of QPCs was observed during the processes of both
formation and annihilation of the conductive nanofilaments, in
both VCM and ECM-type devices. Notably, quantum effects
were observed in devices based on various switching materials,
including mixed-ionic conductors,340,341 polymers,342,343 and a
wide range of metal oxides,34,333,344−350 during both SET and
RESET operations. Figure 27c reports an example of quantum
effects in an ECM cell based on silver iodide (AgI) under current
sweep stimulation during the SET process, showing discrete
levels of conductance that be identified as multiples of the
fundamental quantum of conductance.351 Similarly, quantum
steps were observed in memristive cells under different
operational conditions including voltage sweep stimula-
tion,348,350,352 constant voltage stimulation,346 and pulse
operation mode.341,346,353,354 The difficulty of controlling the
morphology of the filament at the atomic level leads to cell-to-
cell and cycle-to-cycle variations in the device response, which is
usually analyzed through conductance-state histograms. In this

Figure 27. Quantum effects in memristive devices. (a) Schematic representation of ballistic electron transport in memristive devices, where two
conductive reservoirsA andB representingmetal electrodes are connected by a constriction with length L andwidthW and (b) potential energy
of a particle in a 1D box. Reprinted with permission under a Creative Commons CCBY License from ref 31. Copyright 2022 JohnWiley & Sons.
(c) Quantum effects in gapless-type resistive switching devices observed by stimulating the device with a current sweep. Reproduced with
permission from ref 351 Copyright 2012 IOP Publishing Ltd. (d) Discrete conductance steps during the spontaneous relaxation of a single NW
memristive cell with volatile resistive switching mechanism. Reprinted with permission under a Creative Commons CC BY License from ref
355. Copyright 2018 Springer Nature. (e) Dependence of the conductance of Ag nanowire networks (NWN) and Ag nanowire junctions (NW
Jxns) on the applied current compliance and (f) enlarged view showing conductance plateaus close to the quantum conductance. Reprinted
with permission under a Creative Commons CC BY License from ref 365. Copyright 2018 Springer Nature.
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context, conductance-state histogram extracted from exper-
imental data have been reported to show peaks at integer
multiples of G0.

346 However, also half-integer multiples of G0
have been widely reported in many memristive devi-
ces.31,34,333,334,350 In this context, it is important to remark
that only for s-electron metals the transmission probability leads
to conductance channels close to integer multiples of G0 and
quantum steps in memristive devices are more properly
described to be in the quantum rather than quantized regime
of conductance.31 Note also that quantum effects in memristive
devices are not the result of pure electrical effects, as in
conventional QPC systems, but are the result of structural
modifications of the nanofilament due to the movement of ions.
Thus, quantization effects should be discerned from steplike
changes in the device conductance related to a limited number
of accessible nanofilament atomic structures. For example, the
fingerprint of the rearrangement of the nanofilament atomic
structure was observed in single NW memristive devices with
volatile resistive switching characteristics, where discrete steps in
conductance (not multiples of G0) have been observed during
spontaneous dissolution of an Ag nanofilament to form spherical
Ag nanoclusters (Figure 27d).355

A similar but even more mazy situation is found in self-
organizing nanowire networks, where both quantum and
criticality effects can take place. Nanowire networks are
bottom-up devices where a complex emergent behavior is
arising from the interplay between a multitude of ECM cells and
their nonlinear interactions.356 Thanks to their structural
plasticity through reconnection and rewiring,357 coupled with
nonlinear dynamics and fading memory, such nanonetworks
were recently proved to act as ideal devices for in materia
implementations of brain-inspired computing paradigms, such
as reservoir computing.358−360 Nanowire networks are typically
formed by randomly distributed nanowires characterized by
electromigrating metallic cores and insulating shells (Ag and
PVP polymer or Ag and Ag sulfide/iodide are the most common
choices), so that each contact region between the nanowires
becomes an ECM cell. When electrically excited at macroscopic
level, the collective interactions among the many memristive
elements cause a continuous local redistribution of electrical
potential and current.361,362 The system is thus characterized by
metastable states, where several local metallic nanofilaments are
concurrently bridged and broken.363 The so-induced discrete
changes in macroscopic conductivity are characterized by long-
range spatiotemporal interactions over many scales, i.e., they are
scale-invariant phenomena (the fingerprint of any critical
system). Such systems are described by avalanches and the
effective criticality or not can be established from mathematical
analyses of exponents in power-law probability distributions.364

Whatever if the nanowire network is quantitatively defined as
critical or it can be just represented as a percolating system, each
nanowire junction can be in a quantum conductance regime, as
for any standard ECM cell. As reported in Figure 27e, plotting
the measured conductance versus the current compliance shows
a similar power law dependence for standard ECM planar cells,
as well as for single nanowire junctions and for complex
nanowire networks. Furthermore, conductance plateau propor-
tional toG0 are experimentally found (Figure 27f) and attributed
to macroscopic “winner takes all” conductive pathways, where
the involved nanowire junctions are all set at G0. Since such
pathway is calculated by simulations as the lowest possible
energy state in the network, the quantum conductance behavior

in the network is expected to be much more stable respect to
single nanowire junctions.365

As a matter of fact, while quantum levels can be exploited for
multilevel data storage within a single memory cell,366 quantum
effects in memristive devices have been proposed for a wide
range of applications spanning from emulation of synaptic
functionalities and neuroinspired computing346,352 to logic
applications,22 plasmonic switches367 and quantum metrol-
ogy.368 However, to achieve controllable and tailored quantum
levels, as required for all these applications, further under-
standing on the relationship between quantum effects and
involved switching materials, device configuration, and opera-
tional conditions is necessary for a rational design of memristive
devices working in the quantum regime.

6.4. Exploiting Device Nonideality. Stochasticity is
ubiquitous in the world around us. However, stochasticity in
devices is seldom exploited in computation. Conventional
digital logic computing is deterministic. The goal is to get rid of
any variability or nondeterministic behavior and compute with
high precision. However, this is not an energy efficient approach.
Neuromorphic computing is an emerging paradigm inspired by
the brain that can improve the computational efficiency and
computational density of next-generation architectures. Devices
including memristors, phase-change memory, ferroelectric
transistors, magnetic tunnel junctions, and organic material-
based devices are being actively considered to build neuro-
morphic architectures. These emerging devices have varying
levels of integration capability with CMOS, and the primary
candidate has yet to be picked.
Memristors are noisy, and this hinders their widespread

adoption. However, to utilize analog devices effectively, the
noise needs to be embraced. The brain is a prime example of
how noisy devices are utilized for cognition.369 The brain is also
the most efficient processing engine known. With ever
increasing computational demands, researchers need to look
to computational substrates that are energy efficient. This
requires treating stochasticity as a feature, not a bug.
Appropriate algorithms are required to exploit the noise in
memristor devices for robust computation. Recent techniques
show overcoming memristor device nonidealities like faulty
devices, device-to-device variability, random telegraph noise and
line resistance by ensemble averaging,370 and incorporating
noise during online training for better performance of large-scale
memristor based neural networks.215,225,371

Current approaches to neuromorphic architectures focus
primarily on a bottom-up approach to codesign, which does not
effectively exploit the physics of the devices for computation.
The challenge is that typically, low-level device engineers are left
with the burden of demonstrating the usability of their device.
The theory, algorithm, and architecture designers do not have to
contend with unexplored device properties in the toolbox.
Merely designing perfect devices is not sufficient to bring about a
paradigm shift. AI-guided codesign can further alleviate the
challenges of interdisciplinary codesign and accelerate de-
sign.372,373 AI-enhanced codesign techniques can use the
constraints from emerging devices to develop algorithmic
solutions for a given application. This can not only accelerate
design but also enable interactions between experts from
different areas of the microelectronics design stack including
theory, algorithms, circuits, devices, and materials. Creativity in
hardware design will dominate future computing systems that
leverage increasingly heterogeneous components. Probabilistic
computing is an avenue to leverage neuromorphic devices.372
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Multiple applications can benefit from probabilistic computing
including modeling complex problems such as nuclear and high-
energy physics events, complex biological systems, precise
climate models, large-scale neuromorphic applications, and AI
algorithms.

6.5. Dynamic Memristors for Spiking Neural Net-
works. To maximize the system efficiency, it is worth taking a
look at the whole stack of the most efficient computing system
known to date, the brain, and compare it with existing digital
computing systems. As pointed out in a recent review article,374

although both systems have similar stacks (e.g., systems−
organs−cells−molecules in biological systems, and systems−
circuits−devices−materials in computing systems), in biological
systems every stack can perform computing natively utilizing the
underlying molecular/ionic/network dynamics (yellow re-
gions), while in computing systems the devices and circuits
are largely static (gray regions) and functions are only
implemented through programming at the system level (Figure
28). The ability to directly process information with internal
dynamics, as in biological systems, will not only lead to more
efficient computing hardware but can also stimulate algorithm
developments to leverage full stack computing based on this
paradigm.
Recent developments on emerging devices, such as

memristive devices, have indeed revealed interesting internal
d y n a m i c s t h a t m a k e t h i s a p p r o a c h f e a s i -
ble.5,9,180,181,183,205,210,225,249,278,375−383 In fact, by def inition a
memristive device is controlled by a set of time-dependent
differential equations,180,381,384−388 whereas the device state
evolves based on the current and previous inputs to the device.
For example, in an oxide-based memristor, the device
conductance is determined by the internal distribution of
oxygen vacancies (VOs) after going through oxidation,
migration, and reduction processes. These processes are also

affected by the internal temperature and local electric field,
which in turn depend on the device conductance.387 The
coupled electronic, ionic, and thermal processes, each evolving
on its characteristic energy and time scales, can potentially
provide the desired internal dynamics that enable information to
be processed natively at the materials and devices level and up to
the system level stack.
This concept has been tested in memristor devices with

multiple state-variables that evolve at different time scales,
termed “second-order memristors”,379,384,385 and memristors
that offer short-term memory properties. In a second-order
memristor, the activation (e.g., due to the application of an input
voltage pulse) and the spontaneous decay of one state variable
(i.e., local temperature) effectively create an internal timing
mechanism and in turn affect how the conductance, which is
controlled by another state variable (i.e., VO distribution profile)
respond to an input spike train.385 Utilizing these internal
dynamics, common learning rules such as spike-timing depend-
ent plasticity (STDP) can be natively implemented using
identical, nonoverlapping spikes, driven naturally by the
temporal pattern of the inputs.385,386 Preliminary studies have
shown that networks based on these devices can be used to
directly process temporal data to uncover the spatiotemporal
patterns embedded in the spike trains.389

Devices that show only short-termmemory (STM) effects can
also potentially be useful in processing temporal data, in
particular, in the “reservoir computing” (RC) system concept
where memristors with STM effects act as nodes in the
network.390,391 Here the reservoir effectively maps the streaming
inputs (in the form of pulse trains with identical pulse shapes and
information coded in the timing of the pulses) to different
memristor states. A second network layer was then used to
analyze the excited reservoir state (formed by the collective
memristor states) and perform functions such as classification

Figure 28. Even though there are parallels between biological systems and electronic systems, in biological systems, dynamics are leveraged at
all levels to directly perform computing (yellow blocks), while in conventional electronic systems, dynamics are typically lacking and computing
is only enabled by software. Reprinted with permission from ref 374. Copyright 2022 Springer Nature.
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and signal reconstruction.390,391 The ability to directly process
information at the device level leaves plenty of room for
imagination in how a system can be built to effectively utilize
these devices. One vision is to implement a system comprising
second-order memristors and STMmemristors in a hierarchical
manner, inspired by the columnar structure in the neo-
cortex.392−394 The system can be directly integrated with
sensors that produce spatiotemporal data, such as neural probes,
touch sensors, or an event-based camera.395−398 Thememristors
can directly receive the input spike trains from the sensors, and
natively process spatiotemporal information hidden in the spike
trains for tasks such as object detection or motor movement
control.399 Compared with conventional approaches that need
to store and accumulate the sensor inputs, directly processing
the streaming spikes can lead to faster response, lower power,
and more robust noise tolerance.
An early example of this approach, termed columnar learning

network (CLN), has recently been analyzed for multisensory
input recognition tasks. is inspired by themammalian cortex that
consists of cortical columns (Figure 29a) formed by pyramidal
neurons (Figure 29b) and diverse dendritic connec-
tions.392,393,400−402 Compared to networks with point neuron
models, the different dendritic connections help encode spatio-
and temporal-information received by different regions of a
neuron, and allow neurons in the network to interact with each
other to generate more robust outputs.403−406 Particularly,
feedforward, lateral, and feedback connections (shown as
different arrows in Figure 29c, d) are implemented through
proximal basal dendrite (PBD), distal basal dendrite (DBD) and
apical dendrite (AD) connections, respectively. The feedfor-
ward PBD connections extract local features from the input
spikes, while the lateral DBD and the feedback AD connections
help predict the next possible features based on the historical
sequence tendency.400 CLN has been shown (through
simulation)400 to enhance not only classification accuracy, but
also noise robustness. The absence of supervision during
training also leads to a much lower power consumption. The
same network structure developed for the visual sensor was
found to also perform well for audio classification tasks, and a
network consisting of two identical subnetworks can be used to
process multisensory inputs with improved classification
accuracy and noise tolerance.400

7. FUTURE PERSPECTIVE ON MEMRISTIVE
TECHNOLOGIES

Extensive research has been conducted at the material level to
develop memristive technology by improving conventional
nonvolatile memories and developing devices with innovative
operating principles. Despite the advantages of computing-in-
memory using memristive devices for parallel computation
tasks, the reliable production of devices and systems that meet
the requirements of commercially available processors remains
challenging.6,7,407 To date, no memristive device has been
identified as a clear winner to replace CMOS-based electronics.
To overcome the challenges of integrating memristive devices
into commercial IC technologies, comprehensive investigations,
including device optimization, algorithm-architectural studies,
hardware−software codesign, and system-level design, are
necessary (Figure 30a).
Among the many classes of memristive devices, ReRAM and

PCM have reached the most mature development. Redox-based
resistive switching memory is considered the most relevant for
CIM applications due to its fast switching, low power

consumption, and high scalability. However, device variability
resulting from the inherent stochastic resistive switching
mechanism poses a significant challenge. Despite the four-
decade history of PCM as a storage medium and recent
integration as MVM accelerators, power consumption, switch-
ing speed, and CMOS compatibility remain significant hurdles.

Figure 29. (a) Columnar structures in the cortex. A column of
neurons processes the input by forming a receptive field
(represented by colored circles), in which cells process a local
region (indicated in yellow). (b) Schematic of a pyramidal neuron.
The basal dendrites process feedforward and lateral signals, while
the apical dendrites handle upper-layer feedback. (c) Basic structure
of a columnar learning network (CLN). Various connections in the
CLN include proximal basal dendrites (PBDs, green), distal basal
dendrites (DBDs, red), axonal (orange), and apical dendrite (AD,
purple) connections. (d) The connections are indicated in the same
color as those in (c). Reprinted with permission under a Creative
Commons CC BY License from ref 400. Copyright 2022 JohnWiley
& Sons.
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Further studies on integrating other types of devices, such as
ferroelectric memories, ion-intercalation resistors, and MTJs,
into cross-bar arrays for CIM are necessary.
The primary challenge associated with memristive devices is

limited control over ionic movement, which governs the
switching characteristics. For decades, CMOS technologies
have achieved an extremely high level of control in the charge
transport of electrons and holes, while ion-based electronic
devices have seldom been incorporated into IC technologies.
Therefore, more studies on ionic transport, as well as the
associated redox reactions and rearrangements of composition
in solid-state electronics, are necessary to advance analogue
memory technology. In that sense, memristive technology could
be viewed as the starting point for the next chapter of the
development of electronic devices.
While there are challenges associated with using analog

memory-based crosspoint array devices, recent algorithm and
architectural studies have shown promising results in over-
coming nonidealities and achieving high-performance on-chip
training. However, system-level designs must also be carefully
considered to balance gains in performance with increased costs
in chip area and energy efficiency. Further research is needed to
fully realize the potential of analogue memory-based CIM chips,
and simulation frameworks are being developed to aid in this
effort. Ultimately, the goal is to develop algorithms and
architectural designs that can fully leverage the parallelism of
these devices and fill the gap between device-level requirements
and current technology offerings, leading to the widespread use
of analog memory-based chips for CIM (Figure 30a).
In the future development of CIM chips, the scalability and

extendability issues should be addressed to enable real-world
application of CIM technology. Scalability means that the
memristor capacity on the chip should be increased to the 1 Gb
level in order tomatchmainstreamAImodels. This goal requires
advancing integration technology to more advanced nodes in
addition to increasing the memristor resistance to avoid high
current issues on the bitlines. Extendability means that
memristive chips should incorporate more types and more
complex AI models, including CNN, RNN, and LSTM (Figure
30b). In this case, the overhead of ADC/DAC and data buffers
should be minimized and some general-purpose digital circuits,
such as special function units, RISC-V processor units, and

reconfigurable computing units, should be embedded into
memristive chips.
On the other hand, for certain applications, the requirements

may not be as strict as those of CIM chips. For instance, instead
of using a large-sized chip for general purposes, a small-sized
analogue memory array can be employed to perform small-sized
MVM or kernel operations, while still maintaining higher
computing efficiency than conventional CMOS circuits. While
these specialized arrays may have limited functionality
compared to general purpose chips, they can still execute critical
tasks when integrated with other devices. In addition, the
integration of biosensors and memristive devices for cognitive
computing of biosignals can provide possibilities for on-skin
computing and diagnosis. In addition, the random nature of
memristive devices can be exploited in some applications, such
as encryption techniques409 and stochastic computing, where
device variability is not a flaw but rather an attribute that can be
leveraged (Figure 30b). Overall, further improvements in
memristive devices, algorithms, architectures, and systems will
enable memristive technology to reach its full potential in next-
generation computing.
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VOCABULARY
Memristor, A nonlinear passive component characterized by
a pinched hysteresis loop in the voltage−current plane.408,410

Practically, the device “remembers” its most recent resistance
state even when power is removed, which is why it is referred
to as a memristor, short for “memory resistor”. In the context
of this work, a memristive device is defined as any device that
exhibits memristive behavior, including two-terminal and
three-terminal devices.
Compute-in-memory (CIM), a computer architecture in
which computations such as multiplication and summation
are carried out directly within the memory unit eliminating
the need for external data transmission.411

Neuromorphic computing, a branch of computer engineer-
ing where the structure and function are inspired by the brain.
It involves the design of systems composed of artificial
neurons and synapses, implemented using non-vonNeumann
architectures to mimic the computing mechanisms of
biological brains.412,413

Artificial neural network, a computational model that is
inspired by biological neural networks. It may consist of
interconnected layers�namely input, hidden, and output
layers�each containing a number of neurons, which
collectively contribute to its ability to learn and process
complex patterns of information.275

Potentiation and depression, changes in weight resulting
from repetitive stimuli (e.g., voltage pulse). Typically,
potentiation indicates an increase in conductance (or a
decrease in resistance), representing a “weight” increase,
whereas depression signifies a decrease in conductance (or an
increase in resistance), representing a “weight” decrease.
These opposite-direction weight updates emulate synaptic
plasticity mechanisms found in biological neural systems.414

Linearity, the property where the weight update (typically a
change in resistance) is directly proportional to the applied
stimulus (such as a voltage or current pulse).414

Symmetry, the property where the weight updates during
potentiation and depression exhibit a symmetrical behavior,
typically with equal magnitudes but opposite directions.414
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(234) Büchel, J.; Vasilopoulos, A.; Kersting, B.; Odermatt, F.; Brew,
K.; Ok, I.; Choi, S.; Saraf, I.; Chan, V.; Philip, T. Gradient descent-based
programming of analog in-memory computing cores. In 2022
International Electron Devices Meeting (IEDM); IEEE, 2022; pp
33.31.31−33.31.34.
(235) Boybat, I.; Le Gallo, M.; Nandakumar, S.; Moraitis, T.; Parnell,
T.; Tuma, T.; Rajendran, B.; Leblebici, Y.; Sebastian, A.; Eleftheriou, E.
Neuromorphic computing with multi-memristive synapses. Nat.
Commun. 2018, 9, 2514.

ACS Nano www.acsnano.org Review

https://doi.org/10.1021/acsnano.3c03505
ACS Nano 2023, 17, 11994−12039

12034

https://doi.org/10.1109/TED.2020.3015178
https://doi.org/10.1109/TED.2020.3015178
https://doi.org/10.1109/TED.2020.3015178
https://doi.org/10.1109/MM.2021.3131114
https://doi.org/10.1109/MM.2021.3131114
https://doi.org/10.1038/s41928-020-0436-6
https://doi.org/10.1038/s41928-020-0436-6
https://doi.org/10.1038/s41928-020-0436-6
https://doi.org/10.1038/s41467-019-13103-7
https://doi.org/10.1038/s41467-019-13103-7
https://doi.org/10.1038/s41467-019-13103-7
https://doi.org/10.1126/sciadv.aba9901
https://doi.org/10.1126/sciadv.aba9901
https://doi.org/10.1038/nmat4756
https://doi.org/10.1038/nmat4756
https://doi.org/10.1038/s41928-018-0023-2
https://doi.org/10.1038/s41928-018-0023-2
https://doi.org/10.1038/s42256-023-00609-5
https://doi.org/10.1038/s42256-023-00609-5
https://doi.org/10.1002/aisy.202200027
https://doi.org/10.1002/aisy.202200027
https://doi.org/10.1002/aisy.202200027
https://doi.org/10.1038/s41928-020-00523-3
https://doi.org/10.1038/s41928-020-00523-3
https://doi.org/10.1038/s41928-018-0039-7
https://doi.org/10.1038/s41928-018-0039-7
https://doi.org/10.1038/s41928-018-0039-7
https://doi.org/10.1038/s41928-020-0410-3
https://doi.org/10.1038/s41467-021-22364-0
https://doi.org/10.1038/s41467-021-22364-0
https://doi.org/10.1038/s41928-018-0054-8
https://doi.org/10.1038/s41928-018-0054-8
https://doi.org/10.1038/s41928-018-0100-6
https://doi.org/10.1038/s41928-018-0100-6
https://doi.org/10.1109/TVLSI.2020.3020286
https://doi.org/10.1109/TVLSI.2020.3020286
https://doi.org/10.1038/s41565-020-0655-z
https://doi.org/10.1038/s41586-022-04992-8
https://doi.org/10.1038/s41586-022-04992-8
https://doi.org/10.1109/JSSC.2022.3140414
https://doi.org/10.1109/JSSC.2022.3140414
https://doi.org/10.1109/JSSC.2022.3140414
https://doi.org/10.48550/arXiv.2212.02872
https://doi.org/10.48550/arXiv.2212.02872
https://doi.org/10.48550/arXiv.2212.02872
https://doi.org/10.48550/arXiv.2212.02872?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1109/TVLSI.2022.3221390
https://doi.org/10.1109/TVLSI.2022.3221390
https://doi.org/10.1063/5.0116699
https://doi.org/10.1063/5.0116699
https://doi.org/10.1109/JETCAS.2022.3170152
https://doi.org/10.1109/JETCAS.2022.3170152
https://doi.org/10.1109/TC.2022.3230285
https://doi.org/10.1109/TC.2022.3230285
https://doi.org/10.1109/TC.2022.3230285
https://doi.org/10.1109/TC.2022.3230285?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1109/TC.2022.3230285?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/adfm.202106547
https://doi.org/10.1038/s41467-018-04933-y
www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.3c03505?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(236) Khwa, W.-S.; Chiu, Y.-C.; Jhang, C.-J.; Huang, S.-P.; Lee, C.-Y.;
Wen, T.-H.; Chang, F.-C.; Yu, S.-M.; Lee, T.-Y.; Chang, M.-F. A 40-nm,
2M-cell, 8b-precision, hybrid SLC-MLC PCM computing-in-memory
macro with 20.5−65.0 TOPS/W for tiny-Al edge devices. In 2022 IEEE
International Solid-State Circuits Conference (ISSCC); IEEE, 2022; Vol.
65, pp 1−3.
(237) Sheridan, P. M.; Cai, F.; Du, C.; Ma, W.; Zhang, Z.; Lu, W. D.
Sparse coding with memristor networks. Nat. Nanotechnol. 2017, 12,
784−789.
(238) Yao, P.; Wu, H.; Gao, B.; Eryilmaz, S. B.; Huang, X.; Zhang, W.;
Zhang, Q.; Deng, N.; Shi, L.; Wong, H.-S. P.; Qian, H. Face
classification using electronic synapses. Nat. Commun. 2017, 8, 15199.
(239) Li, C.; Hu,M.; Li, Y.; Jiang, H.; Ge, N.; Montgomery, E.; Zhang,
J.; Song, W.; Dávila, N.; Graves, C. E.; et al. Analogue signal and image
processing with large memristor crossbars. Nat. Electron. 2018, 1, 52−
59.
(240) Liu, Q.; Gao, B.; Yao, P.; Wu, D.; Chen, J.; Pang, Y.; Zhang, W.;
Liao, Y.; Xue, C.-X.; Chen,W.-H. 33.2 A fully integrated analog ReRAM
based 78.4 TOPS/W compute-in-memory chip with fully parallel MAC
computing. In 2020 IEEE International Solid-State Circuits Conference-
(ISSCC); IEEE, 2020; pp 500−502.
(241) Yao, P.; Wu, H.; Gao, B.; Tang, J.; Zhang, Q.; Zhang, W.; Yang,
J. J.; Qian, H. Fully hardware-implemented memristor convolutional
neural network. Nature 2020, 577, 641−646.
(242) Jiang, Y.; Gao, B.; Tang, J.; Wu, D.; He, H.; Qian, H.; Wu, H.
HARNS: High-level architectural model of RRAM based computing-
in-memory NPU. In 2021 IEEE International Conference on Integrated
Circuits, Technologies and Applications (ICTA); IEEE, 2021; pp 35−36.
(243) Lee, M. K. F.; Cui, Y.; Somu, T.; Luo, T.; Zhou, J.; Tang, W. T.;
Wong, W.-F.; Goh, R. S. M. A system-level simulator for RRAM-based
neuromorphic computing chips. ACM Trans. Archit. Code Optim. 2018,
15, 1−24.
(244) Zhang, W.; Peng, X.; Wu, H.; Gao, B.; He, H.; Zhang, Y.; Yu, S.;
Qian, H. Design guidelines of RRAM based neural-processing-unit: A
joint device-circuit-algorithm analysis. Proceedings of the 56th Annual
Design Automation Conference 2019 2019, 1−6.
(245) Liu, Y.; Zhao, M.; Gao, B.; Hu, R.; Zhang, W.; Yang, S.; Yao, P.;
Xu, F.; Xi, Y.; Zhang, Q.; et al. Compact reliability model of analog rram
for computation-in-memory device-to-system codesign and bench-
mark. IEEE Trans. Electron Devices 2021, 68, 2686−2692.
(246) Gao, B.; Wu, H.; Wu, W.; Wang, X.; Yao, P.; Xi, Y.; Zhang, W.;
Deng, N.; Huang, P.; Liu, X. Modeling disorder effect of the oxygen
vacancy distribution in filamentary analog RRAM for neuromorphic
computing. In 2017 IEEE International Electron Devices Meeting
(IEDM); IEEE, 2017; pp 4.4.1−4.4.4.
(247) Ambrosi, J.; Ankit, A.; Antunes, R.; Chalamalasetti, S. R.;
Chatterjee, S.; El Hajj, I.; Fachini, G.; Faraboschi, P.; Foltin, M.; Huang,
S. Hardware-software co-design for an analog-digital accelerator for
machine learning. In 2018 IEEE International Conference on Rebooting
Computing (ICRC); IEEE, 2018; pp 1−13.
(248) Zhang, Y.; He, G.; Wang, G.; Li, Y. Efficient and robust RRAM-
based convolutional weight mapping with shifted and duplicated kernel.
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2021, 40, 287−300.
(249) Peng, X.; Liu, R.; Yu, S. Optimizing weight mapping and data
flow for convolutional neural networks on processing-in-memory
architectures. IEEE Trans. Circuits Syst. I: Reg. Papers 2020, 67, 1333−
1343.
(250) Govoreanu, B.; Redolfi, A.; Zhang, L.; Adelmann, C.; Popovici,
M.; Clima, S.; Hody, H.; Paraschiv, V.; Radu, I.; Franquet, A. Vacancy-
modulated conductive oxide resistive RAM (VMCO-RRAM): An area-
scalable switching current, self-compliant, highly nonlinear and wide
on/off-window resistive switching cell. In 2013 IEEE International
Electron Devices Meeting; IEEE, 2013; pp 10.12.11−10.12.14.
(251) Kim, H.; Mahmoodi, M.; Nili, H.; Strukov, D. B. 4K-memristor
analog-grade passive crossbar circuit. Nat. Commun. 2021, 12, 5198.
(252) Chevallier, C. J.; Siau, C. H.; Lim, S. F.; Namala, S. R.;
Matsuoka, M.; Bateman, B. L.; Rinerson, D. A 0.13 μm 64Mb multi-
layered conductive metal-oxide memory. In 2010 IEEE International
Solid-State Circuits Conference-(ISSCC); IEEE, 2010; pp 260−261.

(253) Kawahara, A.; Azuma, R.; Ikeda, Y.; Kawai, K.; Katoh, Y.;
Hayakawa, Y.; Tsuji, K.; Yoneda, S.; Himeno, A.; Shimakawa, K.; et al.
An 8Mbmulti-layered cross-point ReRAMmacro with 443MB/s write
throughput. IEEE J. Solid-State Circuits 2013, 48, 178−185.
(254) Liu, T.-y.; Yan, T. H.; Scheuerlein, R.; Chen, Y.; Lee, J. K.;
Balakrishnan, G.; Yee, G.; Zhang, H.; Yap, A.; Ouyang, J. A 130.7-mm2

2-Layer 32-Gb ReRAMMemory Device in 24-nm Technology. IEEE J.
Solid-State Circuits 2014, 49, 140−153.
(255) Adam, G. C.; Hoskins, B. D.; Prezioso, M.; Merrikh-Bayat, F.;
Chakrabarti, B.; Strukov, D. B. 3-D memristor crossbars for analog and
neuromorphic computing applications. IEEE Trans. Electron Devices
2017, 64, 312−318.
(256) Lin, P.; Li, C.; Wang, Z.; Li, Y.; Jiang, H.; Song, W.; Rao, M.;
Zhuo, Y.; Upadhyay, N. K.; Barnell, M.; et al. Three-dimensional
memristor circuits as complex neural networks. Nat. Electron. 2020, 3,
225−232.
(257) Cai, F.; Correll, J. M.; Lee, S. H.; Lim, Y.; Bothra, V.; Zhang, Z.;
Flynn, M. P.; Lu, W. D. A fully integrated reprogrammable memristor−
CMOS system for efficient multiply−accumulate operations. Nat.
Electron. 2019, 2, 290−299.
(258) Miyamura, M.; Nakaya, S.; Tada, M.; Sakamoto, T.; Okamoto,
K.; Banno, N.; Ishida, S.; Ito, K.; Hada, H.; Sakimura, N. Programmable
cell array using rewritable solid-electrolyte switch integrated in 90nm
CMOS. In 2011 IEEE International Solid-State Circuits Conference;
IEEE, 2011; pp 228−229.
(259) Kim, K.-H.; Gaba, S.; Wheeler, D.; Cruz-Albrecht, J. M.;
Hussain, T.; Srinivasa, N.; Lu, W. A functional hybrid memristor
crossbar-array/CMOS system for data storage and neuromorphic
applications. Nano Lett. 2012, 12, 389−395.
(260) Kim, G. H.; Lee, J. H.; Ahn, Y.; Jeon, W.; Song, S. J.; Seok, J. Y.;
Yoon, J. H.; Yoon, K. J.; Park, T. J.; Hwang, C. S. 32× 32 crossbar array
resistive memory composed of a stacked Schottky diode and unipolar
resistive memory. Adv. Funct. Mater. 2013, 23, 1440−1449.
(261) Kumar, S.; Agarwal, A.; Mukherjee, S. Electrical Performance of
Large-Area Y2O3 Memristive Crossbar Array With Ultralow C2C
Variability. IEEE Trans. Electron Devices 2022, 69, 3660−3666.
(262) Prezioso, M.; Kataeva, I.; Merrikh-Bayat, F.; Hoskins, B.; Adam,
G.; Sota, T.; Likharev, K.; Strukov, D. Modeling and implementation of
firing-rate neuromorphic-network classifiers with bilayer Pt/Al2O3/
TiO2‑x/Pt memristors. In 2015 IEEE International Electron Devices
Meeting (IEDM); IEEE, 2015; pp 17.14.11−17.14.14.
(263) Bayat, F. M.; Prezioso, M.; Chakrabarti, B.; Nili, H.; Kataeva, I.;
Strukov, D. Implementation of multilayer perceptron network with
highly uniform passive memristive crossbar circuits. Nat. Commun.
2018, 9, 2331.
(264) Kim, T.-H.; Lee, J.; Kim, S.; Park, J.; Park, B.-G.; Kim, H. 3-bit
multilevel operation with accurate programming scheme in TiOx/Al2O3
memristor crossbar array for quantized neuromorphic system. Nano-
technology 2021, 32, 295201.
(265) Kim, S.; Park, J.; Kim, T.-H.; Hong, K.; Hwang, Y.; Park, B.-G.;
Kim, H. 4-bit Multilevel Operation in Overshoot Suppressed Al2O3/
TiOx Resistive Random-Access Memory Crossbar Array. Adv. Intell.
Syst. 2022, 4, 2100273.
(266) El Mesoudy, A.; Lamri, G.; Dawant, R.; Arias-Zapata, J.; Gliech,
P.; Beilliard, Y.; Ecoffey, S.; Ruediger, A.; Alibart, F.; Drouin, D. Fully
CMOS-compatible passive TiO2-based memristor crossbars for in-
memory computing. Microelectron. Eng. 2022, 255, 111706.
(267) Indiveri, G.; Linares-Barranco, B.; Legenstein, R.; Deligeorgis,
G.; Prodromakis, T. Integration of nanoscale memristor synapses in
neuromorphic computing architectures. Nanotechnology 2013, 24,
384010.
(268) Chakrabarti, B.; Lastras-Montano, M. A.; Adam, G.; Prezioso,
M.; Hoskins, B.; Payvand, M.; Madhavan, A.; Ghofrani, A.;
Theogarajan, L.; Cheng, K.-T.; Strukov, D. B. A multiply-add engine
with monolithically integrated 3D memristor crossbar/CMOS hybrid
circuit. Sci. Rep. 2017, 7, 42429.
(269) Bavandpour, M.; Mahmoodi, M.; Nili, H.; Bayat, F. M.;
Prezioso, M.; Vincent, A.; Strukov, D.; Likharev, K. Mixed-signal
neuromorphic inference accelerators: Recent results and future

ACS Nano www.acsnano.org Review

https://doi.org/10.1021/acsnano.3c03505
ACS Nano 2023, 17, 11994−12039

12035

https://doi.org/10.1038/nnano.2017.83
https://doi.org/10.1038/ncomms15199
https://doi.org/10.1038/ncomms15199
https://doi.org/10.1038/s41928-017-0002-z
https://doi.org/10.1038/s41928-017-0002-z
https://doi.org/10.1038/s41586-020-1942-4
https://doi.org/10.1038/s41586-020-1942-4
https://doi.org/10.1145/3291054
https://doi.org/10.1145/3291054
https://doi.org/10.1109/TED.2021.3069746
https://doi.org/10.1109/TED.2021.3069746
https://doi.org/10.1109/TED.2021.3069746
https://doi.org/10.1109/TCAD.2020.2998728
https://doi.org/10.1109/TCAD.2020.2998728
https://doi.org/10.1109/TCSI.2019.2958568
https://doi.org/10.1109/TCSI.2019.2958568
https://doi.org/10.1109/TCSI.2019.2958568
https://doi.org/10.1038/s41467-021-25455-0
https://doi.org/10.1038/s41467-021-25455-0
https://doi.org/10.1109/JSSC.2012.2215121
https://doi.org/10.1109/JSSC.2012.2215121
https://doi.org/10.1109/JSSC.2013.2280296
https://doi.org/10.1109/JSSC.2013.2280296
https://doi.org/10.1109/TED.2016.2630925
https://doi.org/10.1109/TED.2016.2630925
https://doi.org/10.1038/s41928-020-0397-9
https://doi.org/10.1038/s41928-020-0397-9
https://doi.org/10.1038/s41928-019-0270-x
https://doi.org/10.1038/s41928-019-0270-x
https://doi.org/10.1021/nl203687n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/nl203687n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/nl203687n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/adfm.201202170
https://doi.org/10.1002/adfm.201202170
https://doi.org/10.1002/adfm.201202170
https://doi.org/10.1109/TED.2022.3172400
https://doi.org/10.1109/TED.2022.3172400
https://doi.org/10.1109/TED.2022.3172400
https://doi.org/10.1038/s41467-018-04482-4
https://doi.org/10.1038/s41467-018-04482-4
https://doi.org/10.1088/1361-6528/abf0cc
https://doi.org/10.1088/1361-6528/abf0cc
https://doi.org/10.1088/1361-6528/abf0cc
https://doi.org/10.1002/aisy.202100273
https://doi.org/10.1002/aisy.202100273
https://doi.org/10.1016/j.mee.2021.111706
https://doi.org/10.1016/j.mee.2021.111706
https://doi.org/10.1016/j.mee.2021.111706
https://doi.org/10.1088/0957-4484/24/38/384010
https://doi.org/10.1088/0957-4484/24/38/384010
https://doi.org/10.1038/srep42429
https://doi.org/10.1038/srep42429
https://doi.org/10.1038/srep42429
www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.3c03505?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


prospects. In 2018 IEEE International Electron Devices Meeting (IEDM);
IEEE, 2018; pp 20.24.21−20.24.24.
(270) Kau, D.; Tang, S.; Karpov, I. V.; Dodge, R.; Klehn, B.; Kalb, J. A.;
Strand, J.; Diaz, A.; Leung, N.; Wu, J. A stackable cross point phase
change memory. In 2009 IEEE International Electron Devices Meeting
(IEDM); IEEE, 2009; pp 1−4.
(271) Fuller, E. J.; Keene, S. T.;Melianas, A.;Wang, Z.; Agarwal, S.; Li,
Y.; Tuchman, Y.; James, C. D.; Marinella, M. J.; Yang, J. J.; et al. Parallel
programming of an ionic floating-gate memory array for scalable
neuromorphic computing. Science 2019, 364, 570−574.
(272) Alibart, F.; Zamanidoost, E.; Strukov, D. B. Pattern classification
by memristive crossbar circuits using ex situ and in situ training. Nat.
Commun. 2013, 4, 2072.
(273) Lee, J.; Du, C.; Sun, K.; Kioupakis, E.; Lu, W. D. Tuning ionic
transport in memristive devices by graphene with engineered
nanopores. ACS Nano 2016, 10, 3571−3579.
(274) Strukov, D. B. Tightening grip. Nat. Mater. 2018, 17, 293−295.
(275) LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015,

521, 436−444.
(276) Hochreiter, S.; Schmidhuber, J. Long short-term memory.

Neural Comput. 1997, 9, 1735−1780.
(277) Koller, D.; Friedman, N. Probabilistic Graphical Models:

Principles and Techniques; MIT Press, 2009.
(278) Wan, W.; Kubendran, R.; Gao, B.; Joshi, S.; Raina, P.; Wu, H.;
Cauwenberghs, G.; Wong, H. P. A voltage-mode sensing scheme with
differential-row weight mapping for energy-efficient RRAM-based in-
memory computing. In 2020 IEEE Symposium on VLSI Technology;
IEEE, 2020; pp 1−2.
(279) Krizhevsky, A. Learning Multiple Layers of Features from Tiny

Images; Technical Report TR-2009, University of Toronto, Toronto,
ON, Canada, 2009.
(280) LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based
learning applied to document recognition. Proc. IEEE 1998, 86, 2278−
2324.
(281)Warden, P. Speech commands: A dataset for limited-vocabulary
speech recognition. arXiv (Computation and Language), April 9, 2018,
1804.03209. DOI: 10.48550/arXiv.1804.03209 (accessed on May 27,
2023).
(282) Semiconductor Research Corporation. The Decadal Plan for

Semiconductors. Semiconductor Research Corporation, 2021. https://
www.src.org/about/decadal-plan/decadal-plan-full-report.pdf (ac-
cessed on May 27, 2023).
(283) Zhou, F.; Chai, Y. Near-sensor and in-sensor computing. Nat.

Electron. 2020, 3, 664−671.
(284) Zhou, F.; Liu, Y.; Shen, X.; Wang, M.; Yuan, F.; Chai, Y. Low-
voltage, optoelectronic CH3NH3PbI3‑xClx memory with integrated
sensing and logic operations. Adv. Funct. Mater. 2018, 28, 1800080.
(285) Zhou, F.; Zhou, Z.; Chen, J.; Choy, T. H.; Wang, J.; Zhang, N.;
Lin, Z.; Yu, S.; Kang, J.; Wong, H.-S. P.; Chai, Y. Optoelectronic
resistive random access memory for neuromorphic vision sensors. Nat.
Nanotechnol. 2019, 14, 776−782.
(286) Chai, Y. In-sensor computing for machine vision. Nature 2020,

579, 32−33.
(287) Choi, D.; Song, M.-K.; Sung, T.; Jang, S.; Kwon, J.-Y. Energy
scavenging artificial nervous system for detecting rotational movement.
Nano Energy 2020, 74, 104912.
(288) Mennel, L.; Symonowicz, J.; Wachter, S.; Polyushkin, D. K.;
Molina-Mendoza, A. J.; Mueller, T. Ultrafast machine vision with 2D
material neural network image sensors. Nature 2020, 579, 62−66.
(289) Song,M.-K.; Namgung, S. D.; Song, Y.-W.; Sung, T.; Ji, W.; Lee,
Y.-S.; Nam, K. T.; Kwon, J.-Y. Fully degradable memristors and
humidity sensors based on a tyrosine-rich peptide. ACS Appl. Electron.
Mater. 2021, 3, 3372−3378.
(290) Liao, F.; Zhou, Z.; Kim, B. J.; Chen, J.; Wang, J.; Wan, T.; Zhou,
Y.; Hoang, A. T.; Wang, C.; Kang, J.; et al. Bioinspired in-sensor visual
adaptation for accurate perception. Nat. Electron. 2022, 5, 84−91.
(291) Song, M.-K.; Lee, H.; Yoon, J. H.; Song, Y.-W.; Namgung, S. D.;
Sung, T.; Lee, Y.-S.; Lee, J.-S.; Nam, K. T.; Kwon, J.-Y. Humidity-
induced synaptic plasticity of ZnO artificial synapses using peptide

insulator for neuromorphic computing. J. Mater. Sci. Technol. 2022, 119,
150−155.
(292) Namgung, S. D.; Kim, R. M.; Lim, Y.-C.; Lee, J. W.; Cho, N. H.;
Kim, H.; Huh, J.-S.; Rhee, H.; Nah, S.; Song, M.-K.; et al. Circularly
polarized light-sensitive, hot electron transistor with chiral plasmonic
nanoparticles. Nat. Commun. 2022, 13, 5081.
(293) Chai, Y. Silicon photodiodes that multiply. Nat. Electron. 2022,

5, 483−484.
(294) Wan, T.; Shao, B.; Ma, S.; Zhou, Y.; Li, Q.; Chai, Y. In-Sensor
Computing: Materials, Devices, and Integration Technologies. Adv.
Mater. 2022, 2203830.
(295) Jang, H.; Hinton, H.; Jung, W.-B.; Lee, M.-H.; Kim, C.; Park,
M.; Lee, S.-K.; Park, S.; Ham, D. In-sensor optoelectronic computing
using electrostatically doped silicon. Nat. Electron. 2022, 5, 519−525.
(296) Wan, T.; Ma, S.; Liao, F.; Fan, L.; Chai, Y. Neuromorphic
sensory computing. Sci. China Inf. Sci. 2022, 65, 1−14.
(297) Liao, F.; Zhou, F.; Chai, Y. Neuromorphic vision sensors:
Principle, progress and perspectives. J. Semicond. 2021, 42, 013105.
(298) Yoon, J. H.; Wang, Z.; Kim, K. M.; Wu, H.; Ravichandran, V.;
Xia, Q.; Hwang, C. S.; Yang, J. J. An artificial nociceptor based on a
diffusive memristor. Nat. Commun. 2018, 9, 417.
(299) Kumar, M.; Kim, H. S.; Kim, J. A highly transparent artificial
photonic nociceptor. Adv. Mater. 2019, 31, 1900021.
(300) Zhang, W.; Gao, B.; Tang, J.; Yao, P.; Yu, S.; Chang, M.-F.; Yoo,
H.-J.; Qian, H.; Wu, H. Neuro-inspired computing chips. Nat. Electron.
2020, 3, 371−382.
(301) Chen, W.-H.; Dou, C.; Li, K.-X.; Lin, W.-Y.; Li, P.-Y.; Huang, J.-
H.; Wang, J.-H.; Wei, W.-C.; Xue, C.-X.; Chiu, Y.-C.; et al. CMOS-
integrated memristive non-volatile computing-in-memory for AI edge
processors. Nat. Electron. 2019, 2, 420−428.
(302) Hills, G.; Lau, C.; Wright, A.; Fuller, S.; Bishop, M. D.; Srimani,
T.; Kanhaiya, P.; Ho, R.; Amer, A.; Stein, Y.; et al. Modern
microprocessor built from complementary carbon nanotube transistors.
Nature 2019, 572, 595−602.
(303) Bishop, M. D.; Hills, G.; Srimani, T.; Lau, C.; Murphy, D.;
Fuller, S.; Humes, J.; Ratkovich, A.; Nelson, M.; Shulaker, M. M.
Fabrication of carbon nanotube field-effect transistors in commercial
silicon manufacturing facilities. Nat. Electron. 2020, 3, 492−501.
(304) Mukhopadhyay, S.; Long, Y.; Mudassar, B.; Nair, C. S.;
DeProspo, B. H.; Torun, H. M.; Kathaperumal, M.; Smet, V.; Kim, D.;
Yalamanchili, S.; Swaminathan, M. Heterogeneous integration for
artificial intelligence: Challenges and opportunities. IBM J. Res. Dev.
2019, 63 (4), 1−4. 1.
(305) Kum, H. S.; Lee, H.; Kim, S.; Lindemann, S.; Kong, W.; Qiao,
K.; Chen, P.; Irwin, J.; Lee, J. H.; Xie, S.; et al. Heterogeneous
integration of single-crystalline complex-oxide membranes. Nature
2020, 578, 75−81.
(306) Ohara, Y.; Lee, K. W.; Kiyoyama, K.; Konno, S.; Sato, Y.;
Watanabe, S.; Yabata, A.; Kobayashi, H.; Kamada, T.; Bea, J. Chip-
based hetero-integration technology for high-performance 3D stacked
image sensor. In 2012 2nd IEEE CPMT Symposium Japan; IEEE, 2012;
pp 1−4.
(307) Amir, M. F.; Ko, J. H.; Na, T.; Kim, D.; Mukhopadhyay, S. 3-D
stacked image sensor with deep neural network computation. IEEE
Sens. J. 2018, 18, 4187−4199.
(308) Aly, M.M. S.;Wu, T. F.; Bartolo, A.; Malviya, Y. H.; Hwang,W.;
Hills, G.; Markov, I.; Wootters, M.; Shulaker, M. M.; Wong, H.-S. P.;
et al. The N3XT approach to energy-efficient abundant-data
computing. Proc. IEEE 2019, 107, 19−48.
(309) Bhansali, S.; Chapman, G. H.; Friedman, E. G.; Ismail, Y.;
Mukund, P.; Tebbe, D.; Jain, V. K. 3D heterogeneous sensor system on
a chip for defense and security applications. In Unattended/Unmanned
Ground, Ocean, and Air Sensor Technologies and Applications VI; SPIE,
2004; Vol. 5417, pp 413−424.
(310) Ng, K. W.; Ko, W. S.; Tran, T.-T. D.; Chen, R.; Nazarenko, M.
V.; Lu, F.; Dubrovskii, V. G.; Kamp,M.; Forchel, A.; Chang-Hasnain, C.
J. Unconventional growth mechanism for monolithic integration of
III−V on silicon. ACS Nano 2013, 7, 100−107.

ACS Nano www.acsnano.org Review

https://doi.org/10.1021/acsnano.3c03505
ACS Nano 2023, 17, 11994−12039

12036

https://doi.org/10.1126/science.aaw5581
https://doi.org/10.1126/science.aaw5581
https://doi.org/10.1126/science.aaw5581
https://doi.org/10.1038/ncomms3072
https://doi.org/10.1038/ncomms3072
https://doi.org/10.1021/acsnano.5b07943?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.5b07943?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.5b07943?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41563-018-0020-x
https://doi.org/10.1038/nature14539
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.48550/arXiv.1804.03209
https://doi.org/10.48550/arXiv.1804.03209
https://doi.org/10.48550/arXiv.1804.03209?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://www.src.org/about/decadal-plan/decadal-plan-full-report.pdf
https://www.src.org/about/decadal-plan/decadal-plan-full-report.pdf
https://doi.org/10.1038/s41928-020-00501-9
https://doi.org/10.1002/adfm.201800080
https://doi.org/10.1002/adfm.201800080
https://doi.org/10.1002/adfm.201800080
https://doi.org/10.1038/s41565-019-0501-3
https://doi.org/10.1038/s41565-019-0501-3
https://doi.org/10.1038/d41586-020-00592-6
https://doi.org/10.1016/j.nanoen.2020.104912
https://doi.org/10.1016/j.nanoen.2020.104912
https://doi.org/10.1038/s41586-020-2038-x
https://doi.org/10.1038/s41586-020-2038-x
https://doi.org/10.1021/acsaelm.1c00357?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsaelm.1c00357?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41928-022-00713-1
https://doi.org/10.1038/s41928-022-00713-1
https://doi.org/10.1016/j.jmst.2021.12.016
https://doi.org/10.1016/j.jmst.2021.12.016
https://doi.org/10.1016/j.jmst.2021.12.016
https://doi.org/10.1038/s41467-022-32721-2
https://doi.org/10.1038/s41467-022-32721-2
https://doi.org/10.1038/s41467-022-32721-2
https://doi.org/10.1038/s41928-022-00822-x
https://doi.org/10.1002/adma.202203830
https://doi.org/10.1002/adma.202203830
https://doi.org/10.1038/s41928-022-00819-6
https://doi.org/10.1038/s41928-022-00819-6
https://doi.org/10.1007/s11432-021-3336-8
https://doi.org/10.1007/s11432-021-3336-8
https://doi.org/10.1088/1674-4926/42/1/013105
https://doi.org/10.1088/1674-4926/42/1/013105
https://doi.org/10.1038/s41467-017-02572-3
https://doi.org/10.1038/s41467-017-02572-3
https://doi.org/10.1002/adma.201900021
https://doi.org/10.1002/adma.201900021
https://doi.org/10.1038/s41928-020-0435-7
https://doi.org/10.1038/s41928-019-0288-0
https://doi.org/10.1038/s41928-019-0288-0
https://doi.org/10.1038/s41928-019-0288-0
https://doi.org/10.1038/s41586-019-1493-8
https://doi.org/10.1038/s41586-019-1493-8
https://doi.org/10.1038/s41928-020-0419-7
https://doi.org/10.1038/s41928-020-0419-7
https://doi.org/10.1147/JRD.2019.2947373
https://doi.org/10.1147/JRD.2019.2947373
https://doi.org/10.1038/s41586-020-1939-z
https://doi.org/10.1038/s41586-020-1939-z
https://doi.org/10.1109/JSEN.2018.2817632
https://doi.org/10.1109/JSEN.2018.2817632
https://doi.org/10.1109/JPROC.2018.2882603
https://doi.org/10.1109/JPROC.2018.2882603
https://doi.org/10.1021/nn3028166?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/nn3028166?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.3c03505?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(311) Koma, A. Van der Waals epitaxy for highly lattice-mismatched
systems. J. Cryst. Growth 1999, 201, 236−241.
(312) Liau, Z.; Mull, D. Wafer fusion: A novel technique for
optoelectronic device fabrication and monolithic integration. Appl.
Phys. Lett. 1990, 56, 737−739.
(313) Benwadih, M.; Coppard, R.; Bonrad, K.; Klyszcz, A.; Vuillaume,
D. High mobility flexible amorphous IGZO thin-film transistors with a
low thermal budget ultra-violet pulsed light process. ACS Appl. Mater.
Interfaces 2016, 8, 34513−34519.
(314) Vinet, M.; Batude, P.; Tabone, C.; Previtali, B.; LeRoyer, C.;
Pouydebasque, A.; Clavelier, L.; Valentian, A.; Thomas, O.; Michaud,
S.; et al. 3D monolithic integration: Technological challenges and
electrical results. Microelectron. Eng. 2011, 88, 331−335.
(315) Bao, S.; Wang, Y.; Lina, K.; Zhang, L.; Wang, B.; Sasangka, W.
A.; Lee, K. E. K.; Chua, S. J.; Michel, J.; Fitzgerald, E.; et al. A review of
silicon-based wafer bonding processes, an approach to realize the
monolithic integration of Si-CMOS and III−V-on-Si wafers. J.
Semicond. 2021, 42, 023106.
(316) Lee, S.-M.; Kwong, A.; Jung, D.; Faucher, J.; Biswas, R.; Shen,
L.; Kang, D.; Lee, M. L.; Yoon, J. High performance ultrathin GaAs
solar cells enabled with heterogeneously integrated dielectric periodic
nanostructures. ACS Nano 2015, 9, 10356−10365.
(317) Shulaker, M. M.; Hills, G.; Patil, N.; Wei, H.; Chen, H.-Y.;
Wong, H.-S. P.; Mitra, S. Carbon nanotube computer. Nature 2013,
501, 526−530.
(318) Wang, S.; Wang, C.-Y.; Wang, P.; Wang, C.; Li, Z.-A.; Pan, C.;
Dai, Y.; Gao, A.; Liu, C.; Liu, J.; et al. Networking retinomorphic sensor
with memristive crossbar for brain-inspired visual perception. Natl. Sci.
Rev. 2021, 8, nwaa172.
(319)Wang, C.; Liang, S.-J.; Wang, C.-Y.; Yang, Z.-Z.; Ge, Y.; Pan, C.;
Shen, X.; Wei, W.; Zhao, Y.; Zhang, Z.; et al. Scalable massively parallel
computing using continuous-time data representation in nanoscale
crossbar array. Nat. Nanotechnol. 2021, 16, 1079−1085.
(320) Choi, C.; Kim, H.; Kang, J.-H.; Song, M.-K.; Yeon, H.; Chang,
C. S.; Suh, J. M.; Shin, J.; Lu, K.; Park, B.-I.; et al. Reconfigurable
heterogeneous integration using stackable chips with embedded
artificial intelligence. Nat. Electron. 2022, 5, 386−393.
(321) Choi, M.; Koh, H.; Yoon, E.; Shin, K.; Song, K. Self-aligning
silicon groove technology platform for the low cost optical module. In
1999 Proceedings. 49th Electronic Components and Technology Conference
(Cat. No. 99CH36299); IEEE, 1999; pp 1140−1144.
(322) Barwicz, T.; Peng, B.; Leidy, R.; Janta-Polczynski, A.;
Houghton, T.; Khater, M.; Kamlapurkar, S.; Engelmann, S.; Fortier,
P.; Boyer, N.; Green, W. M. J. Integrated metamaterial interfaces for
self-aligned fiber-to-chip coupling in volumemanufacturing. IEEE J. Sel.
Top. Quantum Electron. 2019, 25, 1−13.
(323) Sasaki, A.; Baba, T.; Iga, K. Put-in microconnectors for
alignment-free coupling of optical fiber arrays. IEEE Photon. Technol.
Lett. 1992, 4, 908−911.
(324) Barwicz, T.; Taira, Y.; Lichoulas, T. W.; Boyer, N.; Martin, Y.;
Numata, H.; Nah, J.-W.; Takenobu, S.; Janta-Polczynski, A.; Kimbrell,
E. L.; et al. A novel approach to photonic packaging leveraging existing
high-throughput microelectronic facilities. IEEE J. Sel. Top. Quantum
Electron. 2016, 22, 455−466.
(325) Wan, C.; Gonzalez, J. L.; Fan, T.; Adibi, A.; Gaylord, T. K.;
Bakir, M. S. Fiber-interconnect silicon chiplet technology for self-
aligned fiber-to-chip assembly. IEEE Photon. Technol. Lett. 2019, 31,
1311−1314.
(326) Zhang, Y.; Wang, Z.; Zhu, J.; Yang, Y.; Rao, M.; Song,W.; Zhuo,
Y.; Zhang, X.; Cui, M.; Shen, L.; et al. Brain-inspired computing with
memristors: Challenges in devices, circuits, and systems. Appl. Phys.
Rev. 2020, 7, 011308.
(327) Li, C.; Graves, C. E.; Sheng, X.; Miller, D.; Foltin, M.; Pedretti,
G.; Strachan, J. P. Analog content-addressable memories with
memristors. Nat. Commun. 2020, 11, 1638.
(328) Li, Y.; Song,W.;Wang, Z.; Jiang, H.; Yan, P.; Lin, P.; Li, C.; Rao,
M.; Barnell, M.; Wu, Q.; et al. Memristive Field-Programmable Analog
Arrays for Analog Computing. Adv. Mater. 2022, 2206648.

(329) Yang, J. J.; Miao, F.; Pickett, M. D.; Ohlberg, D. A.; Stewart, D.
R.; Lau, C. N.; Williams, R. S. The mechanism of electroforming of
metal oxide memristive switches. Nanotechnology 2009, 20, 215201.
(330) Yang, J. J.; Pickett, M. D.; Li, X.; Ohlberg, D. A.; Stewart, D. R.;
Williams, R. S.Memristive switchingmechanism formetal/oxide/metal
nanodevices. Nat. Nanotechnol. 2008, 3, 429−433.
(331) Choi, B. J.; Torrezan, A. C.; Strachan, J. P.; Kotula, P.; Lohn, A.;
Marinella, M. J.; Li, Z.; Williams, R. S.; Yang, J. J. High-speed and low-
energy nitride memristors. Adv. Funct. Mater. 2016, 26, 5290−5296.
(332) Rao, M.; Tang, H.; Wu, J.; Song, W.; Zhang, M.; Yin, W.; Zhuo,
Y.; Kiani, F.; Chen, B.; Jiang, X.; et al. Thousands of conductance levels
in memristors integrated on CMOS. Nature 2023, 615, 823−829.
(333) Xue, W.; Gao, S.; Shang, J.; Yi, X.; Liu, G.; Li, R. W. Recent
advances of quantum conductance in memristors. Adv. Electron. Mater.
2019, 5, 1800854.
(334) Li, Y.; Long, S.; Liu, Y.; Hu, C.; Teng, J.; Liu, Q.; Lv, H.; Suñé, J.;
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