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Certain non-Hermitian systems exhibit the skin effect, whereby the wave functions become exponen-
tially localized at one edge of the system. Such exponential amplification of wavefunction has received
significant attention due to its potential applications in, e.g., classical and quantum sensing. However, the
opposite edge of the system, featured by exponentially suppressed wave functions, remains largely
unexplored. Leveraging this phenomenon, we introduce a non-Hermitian cooling mechanism, which is
fundamentally distinct from traditional refrigeration or laser cooling techniques. Notably, non-Hermiticity
will not amplify thermal excitations, but rather redistribute them. Hence, thermal excitations can be cooled
down at one edge of the system, and the cooling effect can be exponentially enhanced by the number of
auxiliary modes, albeit with a lower bound that depends on the dissipative interaction with the environment.
Non-Hermitian cooling does not rely on intricate properties such as exceptional points or nontrivial
topology, and it can apply to a wide range of excitations.
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Introduction.—Non-Hermiticity arises naturally in open
quantum systems. Prototypical examples are loss and gain,
which were often considered nuisances in standard
Hermitian quantum mechanics. Recently it was realized
that a careful balance between gain and loss can lead to the
emergence of intriguing phenomena such as parity-time
symmetry breaking and exceptional points [1–5]. Other
non-Hermitian phenomena, such as non-Hermitian top-
ology [6–11], which can be defined solely based on
eigenvalues instead of eigenvectors, have generated con-
siderable attention as well.
Aparticularly interestingproperty of certain non-Hermitian

systems is the non-Hermitian skin effect (NHSE) [12–19],
whereby the wave functions are exponentially localized at
one boundary of the system. Various novel applications
have been proposed based on the NHSE, such as directional
amplification of signals [20–23] and (potentially exponen-
tially) enhanced sensing [24–26]. However, the majority of
studies in non-Hermitian physics focus on non-Hermiticity-
induced amplification [1–4,20–28,15]. It is worth noting
that the exponential amplification of wavefunctions on one
edge implies the exponential suppression of wave functions
on the opposite edge. This property, however, remains
largely unexplored. In this work, we focus on applications
of this effect in non-Hermitian systems, in particular toward
cooling thermal excitations.
Cooling down thermal excitations is an essential step for

numerous applications that span nearly all scientific and
technological domains. However, traditional refrigeration

often requires bulky devices, and it can be rather difficult
to cool down below certain limits, such as several milli-
Kelvin in dilution refrigerators [29]. Meanwhile, laser
cooling relies on relatively weak nonlinear optical proc-
esses [30–33], necessitating strong pumping lasers that can
potentially result in side effects. A critical observation is
that in both traditional refrigeration and laser cooling,
cooling is achieved by transferring thermal excitations to
auxiliary modes (thermal bath) that have smaller occupa-
tion numbers [Figs. 1(a) and 1(b)]. This raises the question:
is this a necessary condition for cooling?
In this Letter, we propose a non-Hermitian coolingmecha-

nism, which is related to nonreciprocal refrigeration [34,35],

FIG. 1. Illustration of the mechanism of (a) traditional refrig-
eration, (b) laser cooling, and (c) non-Hermitian cooling. Red
(blue) circles denote the principal (auxiliary) mode, and the color
filling denotes thermal occupation. The arrows indicate the
transfer of thermal excitation, with thicker arrows corresponding
to faster transfer.
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but is fundamentally different from traditional refrigeration
or laser cooling. The non-Hermitian cooling stems from the
directional transport of thermal excitations and can be
achieved even if the auxiliary modes have the same occu-
pation number [Fig. 1(c)]. We will demonstrate that direc-
tional transport does not significantly amplify but only
redistributes thermal excitations in non-Hermitian systems.
This guarantees that the localizationof thermal excitation and
heating on one edge (i.e., NHSE) will at the same time result
in cooling on the opposite edge. By employing two different
theoretical approaches, we reveal that the cooling effect can
be exponentially enhanced by the number of auxiliary non-
Hermitianmodes, although a lower bound emerges when the
dissipative interaction with the environment is included.
The non-Hermitian cooling is inherently versatile. In

principle, it applies to various types of excitations including
photons, phonons, magnons, etc. The non-Hermitian cool-
ing does not require intricate properties such as parity-time
symmetry [1,36–38], exceptional points [1–5], or nontrivial
topologies [15,25,26]. The only requirement is the nonre-
ciprocal hopping and directional transport of the excita-
tions, corresponding to the emergence of the NHSE. Hence,
we expect non-Hermitian cooling to be widely applicable.
In the following, wewill first explain the distinctiveness of

non-Hermitian cooling by comparing it with traditional
refrigeration and laser cooling methods. Then, starting from
two-mode systems, we will demonstrate the performance of
non-Hermitian cooling, including the exponential enhance-
ment in multi-mode systems, as well as the lower bound of
the cooling effect. Finally, we will discuss some issues
relevant to the practical realization of non-Hermitian cooling.
Traditional refrigeration, laser cooling, and non-

Hermitian cooling.—For clarity, we will use principal
and auxiliary to denote the mode to be cooled down and
the modes that facilitate the cooling process, respectively.
For traditional refrigeration, the key step is to attach the
principal mode to the auxiliary modes (thermal bath) with
the same intrinsic frequency but lower temperature, which
have smaller occupation numbers. Then, the thermal
excitations would naturally flow into the thermal bath
via heat transfer, leading to the cooling effect [Fig. 1(a)].
Clearly, the lowest achievable temperature is the temper-
ature of the thermal bath. While diverse schemes have been
devised to create thermal baths with low temperatures, it
can be extremely demanding and costly for traditional
refrigeration to go beyond a certain limit, e.g., several milli-
Kelvin in dilution refrigerators [29].
Laser cooling uses a different mechanism. A low-

frequency principal mode is coupled to an auxiliary mode
with a higher (usually optical) frequency, whose effective
thermal occupation is much smaller even at elevated
temperatures [Fig. 1(b)]. It is worth noting that some other
processes, such as dynamic nuclear polarization [39],
employ a similar mechanism. For laser cooling, the thermal
excitations in the principal mode are pumped to the

auxiliary mode by an external laser, which compensates
for the energy difference. While laser cooling is remar-
kably successful, as seen in the achievement of picokelvin
temperatures for ultracold atoms [40], it is ultimately
limited by the laser power and the dissipation of the
principal and auxiliary modes. Specifically, the transfer
of thermal excitations via laser pumping relies on intrinsi-
cally weak and usually nonlinear optical processes. Hence,
strong pumping lasers are required, which can cause
heating and damage to the surrounding, especially in
solid-state systems. Moreover, the auxiliary high-frequency
modes usually have high dissipation rates, which also limits
the effectiveness of laser cooling.
One can see that both traditional refrigeration and

laser cooling result from transferring thermal excitations
to auxiliary modes with smaller occupation numbers.
Indeed, for bosonic modes, the transition (energy transfer)
rate for both traditional contact cooling and laser cooling
from the principal to the auxiliary mode is gn1ð1þ n2Þ,
while that in the reverse direction is gn2ð1þ n1Þ, so the net
flow is gðn1 − n2Þ. Here n1 (n2) is the occupation number
of the principal (auxiliary) mode, while g is the reciprocal
coupling strength. Clearly, cooling of the principal mode
requires n2 < n1. Similar analyses hold for fermionic
modes as well.
In contrast, this is not a necessary condition for cooling

in a non-Hermitian system. Even if the principal and
auxiliary modes have the same occupation number, cooling
could still be achieved if (i) the transfer of excitations is
directional, so that the excitations preferably jump from the
principal to the auxiliary modes [Fig. 1(c)]; (ii) the direc-
tional transport does not significantly amplify total thermal
excitations in the system. In the following, we will
demonstrate that both conditions can be satisfied in certain
non-Hermitian systems.
Non-Hermitian cooling in two-mode systems.—To better

understand the non-Hermitian cooling effect, let us first
examine a two-mode system, where the principal mode-1
and auxiliary mode-2 have the same intrinsic frequency
ω0 [inset of Fig. 2(b)]. We will assume the two modes to be
bosons, such as photons, phonons, or magnons, but the
discussions below can be adapted to fermionic modes as
well. We will show that in a non-Hermitian system, the
transition rate from modes 1 to 2 can be different from that
in the reverse direction, resulting in an unbalanced steady-
state occupation (SSO) and an effective cooling effect. We
consider the following Hamiltonian of the two-mode
system in the rotating frame of ω0

H ¼ t12a1a
†
2 þ t21a

†
1a2: ð1Þ

Here ai (a
†
i ) is the annihilation (creation) operator of mode-

i, while t12 ¼ teA and t21 ¼ te−A are the intermode
coupling strength. The interaction is non-Hermitian when
A has a nonzero real part. For definiteness and without loss
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of generality, we will take A > 0 as a real number unless
explicitly stated. The time evolution of the density matrix ρ
can be described by the quantum master equation [41–43],
ð∂ρ=∂tÞ ¼ −iðH ρ − ρH †Þ þ iTrfρðH − H †ÞgρþP

i LðoiÞρ, which is adapted for a non-Hermitian
HamiltonianH ≠ H † (see Sec. 1 of Ref. [44] for detailed
discussions, which also includes Refs. [8,14,21,41,45–47]).
The dissipative interactions with the environment (thermal
bath) are described by the Lindblad operators LðoiÞρ≡
oiρo

†
i − 1

2
ðo†i oiρ − ρo†i oiÞ for operator oi.

One can readily observe that when the dissipative
interactions with the thermal bath are ignored, the “Rabi”
oscillation between modes 1 and 2 is still periodic, but will
deviate from a normal sinusoidal function [Fig. 2(a)].
Compared with the 1 → 2 oscillation, the reverse 2 → 1
oscillation takes a longer time τ21 ∼ ð1=t21Þ, resulting in an
unbalance between the two modes, and the excitations
would preferably reside in mode 2.
Considering the dissipative interactions with the thermal

bath and assuming the occupation numbers to be small, one
has (Sec. 1 of Ref. [44])

∂n1
∂t

≈ i
�
t12

�
a1a

†
2

�− t21
�
a†1a2

��−κ1½n1−nth�;
∂ha†1a2i

∂t
≈ i

�
t�21

�
a†2a2

�− t12
�
a†1a1

��−κ1þ κ2
2

�
a†1a2

�
: ð2Þ

Here κi is the dissipation rate of mode i, and nth is the
occupation number of the thermal bath, which is assumed

to be the same for the two modes. Note that nth is also the
equilibrium occupation number of the two modes if the
non-Hermiticity is absent (i.e., t12 ¼ t21). Meanwhile,
hoi≡ Trfρog indicates the thermal average of operator
o, and n1 ≡ ha†1a1i is the occupation of mode 1. Similar
equations hold when modes 1 and 2 are exchanged. In the
steady state, one has

g12n1 þ κ1n1 ≈ g21n2 þ κ1nth;

g21n2 þ κ2n2 ≈ g12n1 þ κ2nth; ð3Þ

where gij ¼ 2
�jtijj2 þ tijtji

�
=ðκi þ κjÞ is the non-

Hermitian transition rate from mode i to j. Note that
one recovers gij ¼ 4t2=ðκi þ κjÞ for A ¼ 0, which is a well-
known result obtained from Fermi’s golden rule, if assum-
ing Lorentzian lineshapes.
The SSO n1 and n2 as a function of eA are shown in

Fig. 2(b), where we assume κ1 ¼ κ2 ¼ 0.01t and nth ¼ 1.
In a Hermitian system with A ¼ 0, one has n1 ¼ n2 ¼ nth,
as expected. In contrast, one has n1 < nth for A > 0, which
is the non-Hermitian cooling effect. Moreover, n1 gradually
decreases to zero as eA increases. Nonetheless, for finite
values of eA, the cooling effect is limited. For example, one
has n1 ≈ 0.4 nth when eA ¼ 2. Note that this cooling effect
is closely related to nonreciprocal refrigeration [34,35].
Exponential non-Hermitian cooling in multimode

systems.—The cooling effect described in the previous
section can be exponentially enhanced if more auxiliary
modes are added. Ideally, one should be able to achieve
n1 ∝ ðg12=g21Þ−N in an N-mode non-Hermitian chain
[Fig. 3(a)]. The Hamiltonian of the chain in the rotating

FIG. 2. (a) Unbalanced “Rabi” oscillation in the non-Hermitian
two-mode system with eA ¼ 2. Green and white shaded regions
correspond to n1 < n2 and n1 > n2, respectively. (b) Steady-state
occupation as a function of eA with κ1 ¼ κ2 ¼ 0.01 t. Inset of (b):
Illustration of a non-Hermitian two-mode system. The color
filling denotes SSO.

FIG. 3. (a) Illustration of a non-Hermitian N-mode chain. The
color filling denotes SSO. (b) SSO of each mode in the chain with
varying length N. The dashed line indicates the exponential
scaling of ni ∝ ðg12=g21ÞN−i. (c) SSO of the leftmost mode-1 as a
function of N with varying κ. The solid blue line comes from
Eq. (5), which coincides with the case of κ → 0. We set eA ¼ 2 in
(b),(c) and κ ¼ 0.01 t in (b).
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frame is

H ¼
XN−1

i¼1

ti;iþ1aia
†
iþ1 þ tiþ1;ia

†
i aiþ1; ð4Þ

with ti;iþ1 ¼ teA and tiþ1;i ¼ te−A. This is the renowned
non-Hermitian Hatano-Nelson model [12,18]. By diagonal-
izing Eq. (4), one has H jψαi ¼ ϵαjψαi, where the αth
eigenstate has energy ϵα and right eigenvector jψαi. Under
the current setting, H can be mapped to a Hermitian
Hamiltonian by a similarity transformation [8,48].
Consequently, ϵα are all real numbers, while jψαi are
exponentially localized on the right boundary, i.e.,
ψ i
α ≈ eAψ i−1

α , which is the NHSE [8,18]. In many scenarios,
the coupling strengths te�A are much smaller than other
energy scales, such as the intrinsic mode frequency ω0

and the temperature T. Hence, if one arbitrarily applies
standard thermodynamics to the Hatano-Nelsonmodel [49],
then all the eigenstates jψαi should have almost the same
probability to be occupied, and the SSO of the ith mode is

nHNi ¼ nth
X

α

��ψ i
α

��2: ð5Þ

Here the superscript HN indicates that the occupations are
obtained directly from the wavefunctions of the Hatano-
Nelson model. One can easily verify that ni ¼ nth if the
Hamiltonian is Hermitian (A ¼ 0), as expected. In contrast,
with A > 0, the NHSE implies that the SSO on the left edge
is exponentially suppressed with nHNi ≈ e−2AnHNiþ1 and
nHN1 ∼ nthe−2NA, corresponding to the exponential cooling
effect.
One may wonder whether the exponential cooling effect

described above can survive if the dissipative interactions
with the environment are incorporated. Fortunately, the
answer is yes, although a lower bound on n1 would arise
with given eA and κ. Generalizing the steady-state equa-
tions Eq. (3) to the N-mode system, one has

gi;iþ1niþ gi;i−1niþ κni ¼ giþ1;iniþ1þ gi−1;ini−1þ κnth;

i¼ 1;2;…;N; ð6Þ

where for simplicity, we assume the thermal dissipation rate
(κ) and the thermal bath occupation (nth) to be the same for
all modes. Meanwhile, we set gi;iþ1 ¼ g12 and giþ1;i ¼ g21,
and the open boundary condition is implicitly incorporated
by setting g01 ¼ g10 ¼ gN;Nþ1 ¼ gNþ1;N ¼ 0.
An intriguing and important observation from Eq. (6) is

that the sum of SSO on all modes remains a constant, i.e.,P
i ni ≡ Nnth, regardless of the values of gij. This implies

that an increase in the SSO of some modes must be
accompanied by a decrease in other modes. While the
thermal excitations can internally redistribute in different
modes, the N-mode system as a whole must exhibit Nnth

excitations to the environment. This should be compared
with the cases whereby an input signal is amplified by the
non-Hermitian chain [20–22], which can be used to
improve classical and/or quantum sensing [25,26]. Here,
the non-Hermitian chain does not amplify but only redis-
tributes the thermal excitations. This crucial property
guarantees that the NHSE will lead to exponential non-
Hermitian cooling.
We numerically solve the steady-state equations Eq. (6)

to obtain the SSO in a non-Hermitian chain [Figs. 3(b)
and 3(c)]. eA is set to 2 unless explicitly stated. With a
fixed and finite κ; the SSO of the leftmost mode n1 first
decreases exponentially with N, and then becomes a
constant limN→∞n1ðκ;NÞ≈ ½κ2nth=ðκ2þ t212− t221Þ� (Sec. 2
of Ref. [44]). While obtained using a different approach,
nHN1 in Eq. (5) coincides with the case of κ → 0, i.e.,
nHN1 ≈ limκ→0n1ðκ; NÞ. This agreement suggests that the
theoretical results presented here should be robust. The
nonreciprocal cooling studied in Refs. [34,35] corresponds
to the special case of N ¼ 2 in the current work. We would
like to emphasize that using a multimode system (N > 2)
can further reduce the lowest achievable occupation num-
ber n1 of the principal mode.
Cooling down a reciprocally coupled mode.—In some

situations, establishing a non-Hermitian interaction can be
challenging, and/or can lead to unwanted side effects for
the principal mode, such as extra dissipations [45]. In this
case, one can attach the principal mode (denoted by 0 here)
to mode 1 in the non-Hermitian chain described above.
The interaction between modes 0 and 1, H 0 ¼
t0
�
a0a

†
1 þ a†0a1

�
, can be Hermitian [Fig. 4(a)]. The cooling

FIG. 4. (a) A Hermitian principal mode-0 is attached to the non-
Hermitian chain. (b) SSO of mode-0 as a function of κ0 and t0.
The non-Hermitian chain has N ¼ 15 modes with eA ¼ 2
and κ ¼ 0.01 t.
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effect of mode 0 comes from the fact of n1 ≪ nth, as the
flow of thermal excitation will be dominantly in the 0 → 1,
rather than the 1 → 0 direction, even if the transition
between modes 0 and 1 is reciprocal. Using the steady-
state equations Eq. (6), one can obtain the SSO [Fig. 4(b)]

n0 ≈
g0n1 þ κ0nth

g0 þ κ0
; ð7Þ

where κ0 is the dissipation rate of mode 0, and g0 ¼
4jt0j2=ðκ þ κ0Þ is the reciprocal transition rate between
mode 0 and 1. One can see that a cooling effect (n0 < nth)
can be realized whenever n1 < nth.
Discussions.—The non-Hermitian cooling efficiency

depends on two parameters, namely, eA and κ=t. In theory,
one can achieve eA → ∞ by judiciously designing the
interaction between the two modes using, e.g., reservoir
engineering [45] or parametric driving [21,46]. In practice,
eA ≳ 3 has been realized in, e.g., Josephson junctions [20],
optomechanical circuits [50], and optically levitated nano-
particles [51]. Hence, we believe eA ¼ 2 used in this work
is feasible. The non-Hermitian interaction between multiple
modes has been demonstrated as well [52]. Still, additional
experimental efforts are required to further increase eA and
N, so that the potential of the non-Hermitian cooling effect
can be fully exploited. A concern can arise from the possible
detrimental influence of thermal fluctuations in the externals
modes or driving fields that are used to induce the non-
Hermitian interactions. Fortunately, our analyses show that
the influence of such thermal fluctuations should be neg-
ligible in generating the non-Hermitian dynamics, at least in
the first order approximation (Sec. 4 ofRef. [44]).Moreover,
in practice the non-Hermitian interactions are often driven
by optical photons [51,53], whose thermal fluctuations
are extremely small because of their high intrinsic frequen-
cies. Furthermore, strong couplings (κ=t ≪ 1) can be
realized between microwave resonators [54], mechanical
resonators [55], magnons [56,57], etc. It should be empha-
sized that the coupling t here can be direct linear interactions
without external pumping, such as the Zeeman interaction
between magnons and microwave resonators. In contrast,
for laser cooling the interactions between the principal and
auxiliary modes are relatively weak (nonlinear) optical
processes under external laser pumping, which leads to
some limitations discussed before.
The presented non-Hermitian cooling applies to

various excitations, including atoms, photons [15,58],
phonons [17,50,59,60], Josephson circuits [20,21], mag-
nons [42,61], etc., whereby non-Hermitian interactions
have been realized. Moreover, non-Hermitian cooling
exists whenever the wave function density is suppressed in
certain local regions (not necessarily on the edge) of the
non-Hermitian system. It does not require sophisticated
properties such as exceptional points [1–5], nontrivial topo-
logy [15,26], or mixing between different quadratures of

the electromagnetic fields [25]. As an example, we inves-
tigated the non-Hermitian Su-Schrieffer-Heeger model
(Bosonic) (Sec. 3 of Ref. [44]), which can undergo
topological phase transitions under certain conditions
[8,18,62]. We find that non-Hermitian cooling exists and
is almost identical in both topologically trivial and non-
trivial phases.
In summary, we proposed a non-Hermitian cooling

mechanism that is fundamentally different from traditional
refrigeration and laser cooling techniques. The non-
Hermitian cooling is generically applicable to various
physical systems and can be exponentially enhanced by
the number of auxiliary modes. We anticipate the non-
Hermitian cooling paradigm to find applications in various
domains, such as quantum information science, where
efficient cooling towards the ground state is desirable.
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1 Non-Hermitian transition rates from the master equation

In this section, we demonstrate how one can obtain the non-Hermitian transition rates from the

master equation. We will focus a two-mode systems with the same intrinsic frequency ω0. Using the

rotating wave approximation, the Hamiltonian can be written as

H = t12a1a
†
2 + t21a

†
1a2, (S1)

where t12 = teA and t21 = te−A indicate non-Hermitian interaction with A ̸= 0 a real number. The

master equation for a non-Hermitian system can be expressed as [1]

∂ρ

∂t
= −i(Hρ− ρH†) + iTr

{
ρ(H−H†)

}
ρ+

∑
i

L(ζi)ρ, (S2)

where Tr {o} is the trace of operator o. Compared with the standard master equation, the first term in

Eq. (S2) is adapted to a non-Hermitian Hamiltonian H ̸= H†. In practice, there are different approaches

to achieve the non-Hermiticity t21 ̸= t12, such as reservoir engineering [2] or parametric driving [3, 4].

These are controlled and desired interactions with certain external modes, and we (approximately)

incorporate them using the non-Hermitian Hamiltonian. The second term in Eq. (S2) is used to make

the master equation trace conserving (i.e., to maintain Tr {ρ} = 1) [1]. Meanwhile, the third term,

L(ζi)ρ ≡ ζiρζ
†
i − 1

2
ζ†i ζiρ − 1

2
ρζ†i ζi, is the Lindblad operator, which represents the uncontrolled and

undesired dissipative interaction with the environment.

For the two-mode system under consideration, one needs to include four ζ operators, namely,

ζ1 =
√

κ1(nth + 1)a1,

ζ2 =
√
κ1ntha

†
1,

ζ3 =
√

κ2(nth + 1)a2,

ζ4 =
√
κ2ntha

†
2,

(S3)

where κ1 (2) and nth are the thermal dissipation rate and the thermal occupation number, respectively.

Then, we need to obtain how the occupation number of each mode evolves with time. For mode-1,

2



we need to calculate
∂⟨a†1a1⟩

∂t
=

∂

∂t
Tr

{
ρa†1a1

}
= Tr

{
∂ρ

∂t
a†1a1

}
. (S4)

Here ⟨o⟩ ≡ Tr {ρo} is the thermal average of operator o. From Eq. (S2), one can see that ∂ρ
∂t

is composed

of three parts. The first part, which comes from the first term on the right hand side of Eq. (S2), can

be expressed as[
∂⟨a†1a1⟩

∂t

]
(1)

= −iTr
{
(Hρ− ρH†)a†1a1

}
= i⟨H†a†1a1 − a†1a1H⟩

= i⟨t∗12a
†
1a2a

†
1a1 + t∗21a1a

†
2a

†
1a1 − t12a

†
1a1a1a

†
2 + t21a

†
1a1a

†
1a2⟩.

(S5)

Here we assume that the occupations of the two modes are both very small, so that the two-operator

averages such ⟨a†1a1⟩ and ⟨a†2a2⟩ are much smaller than 1. Consequently, to the first order of two-

operator averages, some four-operator averages such as ⟨a†1a2a
†
1a1⟩ can be ignored because one has

⟨a†1a2a
†
1a1⟩ ∼ ⟨a†1a2⟩⟨a

†
1a1⟩ ≪ ⟨a†1a2⟩ [5]. This approximation leads to[

∂⟨a†1a1⟩
∂t

]
(1)

≈ i
[
t12⟨a1a†2⟩ − t21⟨a†1a2⟩

]
. (S6)

Similarly, the contributions from the second and third terms on the right hand side of Eq. (S2) are[
∂⟨a†1a1⟩

∂t

]
(2)

≈ 0,

[
∂⟨a†1a1⟩

∂t

]
(3)

= −κ1

[
⟨a†1a1⟩ − nth

]
.

(S7)

Finally, one has

∂⟨a†1a1⟩
∂t

=

[
∂⟨a†1a1⟩

∂t

]
(1)

+

[
∂⟨a†1a1⟩

∂t

]
(2)

+

[
∂⟨a†1a1⟩

∂t

]
(3)

≈ i
[
t12⟨a1a†2⟩ − t21⟨a†1a2⟩

]
− κ1

[
⟨a†1a1⟩ − nth

]
.

(S8)

The time evolution of other two-operator averages can be obtained in a similar fashion, and one has

∂⟨a†2a2⟩
∂t

≈ i
[
t21⟨a†1a2⟩ − t12⟨a1a†2⟩

]
− κ2

[
⟨a†2a2⟩ − nth

]
,

∂⟨a†1a2⟩
∂t

≈ i
[
t∗21⟨a

†
2a2⟩ − t12⟨a†1a1⟩

]
− κ1 + κ2

2
⟨a†1a2⟩,

∂⟨a1a†2⟩
∂t

≈ i
[
t∗12⟨a

†
1a1⟩ − t21⟨a†2a2⟩

]
− κ1 + κ2

2
⟨a1a†2⟩.

(S9)
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In the steady state, all time derivatives can be set to zero, yielding

g12n1 + κ1n1 = g21n2 + κ1nth,

g21n2 + κ2n2 = g12n1 + κ2nth,
(S10)

where

g12 =
2 (|t12|2 + t12t21)

κ1 + κ2

,

g21 =
2 (|t21|2 + t12t21)

κ1 + κ2

(S11)

are the non-reciprocal transition rates between modes 1 and 2. Notably, when t12 = t21 = t, one has

g12 = g21 =
4t2

κ1+κ2
, a well-known result that can be obtained from Fermi’s golden rule.

2 Lower bound of the non-Hermitian cooling effect

In the main text, we mentioned that the steady-state occupation of the principal mode can be made

exponentially small by adding more auxiliary modes, but there is a lower-bound when the dissipative

interaction with the environment is considered. This lower-bound can be obtained by examining the

steady-state equation of mode-1 in the N -mode non-Hermitian chain, which is

g12n1 + κn1 = g21n2 + κnth

=⇒ n1 =
g21n2 + κnth

g12 + κ
.

(S12)

Clearly, n1 can be minimized when n2 is minimized. However, one always has n2 > n1 no matter how

long the non-Hermitian chain is. Hence, the lower bound for n1 can be obtained by setting n2 = n1 in

Eq. (S12), yielding

lim
N→∞

n1(N,κ) ≈ κnth

κ+ g12 − g21

=
κ2nth

κ2 + t212 − t221
.

(S13)

This result is plotted as the dashed curve in Figure S1, which exhibits reasonable agreement with the

results obtained by numerically solving the steady-state equation in the main text with a very large N

(red circles). Similar agreements have been found for the non-Hermitian chain with different eA (Figure

S2).
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Figure S1: The lower bound of the steady-state occupation of mode-1 in the non-Hermitian chain with

eA = 2 . The blue dashed curve comes from Eq. (S12), while the red circles are obtained by numerically

solving the steady-state equation with a very large N = 100.

3 Non-Hermitian cooling in the Su–Schrieffer–Heeger model

In the main text, we used the Hatano-Nelson model to demonstrate the non-Hermitian cooling

effect. The Hatano-Nelson model does not exhibit exceptional points or topological properties. Here,

we investigate the non-Hermitian cooling effect in the non-Hermitian Bosonic Su–Schrieffer–Heeger

(SSH) model, which can undergo topological phase transitions.

In the SSH model, one unit cell i is composed of two modes labelled by A and B, respectively

[Figure S3(a)]. For a N -unit-cell SSH chain, the Hamiltonian can be expressed as

H =
N∑
i=1

t1

(
ai,Aa

†
i,B + a†i,Aai,B

)
+

N−1∑
i=1

(t2 + γ) a†i+1,Aai,B + (t2 − γ) ai+1,Aa
†
i,B.

(S14)

One can see that the chain is non-Hermitian when γ is a non-zero real number. In the Hermitian SSH

model with γ = 0, the topological phase transition happens at t1 = t2. In the non-Hermitian SSH

model with γ ̸= 0, the topological phase transition point is influenced by γ [6]. In the following, we will

fix N = 20 and γ = 0.3t2. The numerical spectra of the SSH model are shown in Figure S3(b), where

one can observe a topological phase transition when t1 ≈ 0.7t2.

Then, we study the non-Hermitian cooling effect using t2 = 0.5t1 and t2 = 1.5t1, whereby the SSH

model belongs to different topological phases [dashed vertical lines in Figure S3(b)]. The results are

shown in Figure S4. One can see that the non-Hermitian cooling effect is almost identical in the two

5



(a) (c)

(b) (d)

Figure S2: (a,c) Steady-state occupation of the mode-1 as a function of N with varying κ. The

solid blue line are obtained from the wavefunctions of the Hatano-Nelson model, while the circles are

obtained by solving the steady-state equations. (b,d) The lower bound of the steady-state occupation

of mode-1 in the non-Hermitian chain. The labels are the same as those in Figure S1. eA is set as 1.5

and 4 in (a,b) and (c,d), respectively.
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A B A B

𝑡1 𝑡2 + 𝛾

𝑡1 𝑡2 − 𝛾

𝑡1

𝑡1

A B

𝑡1

𝑡1

⋯⋯

(a)

(b)

Figure S3: (a) An illustration of the SSH model. (b) Numerical spectra of the SSH model with N = 20

and γ = 0.3t2.

(a) (b)

Figure S4: Steady-state occupation of the mode-1 as a function of N with varying κ in the SSH

model. The solid blue lines are obtained from the wavefunctions of the SSH model, while the circles

are obtained by solving the steady-state equations.
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phases. Moreover, the predictions from the wavefunction density (solid blue lines) agree with the results

from the steady-state equations in the limit of κ → 0. These results suggest that the non-Hermitian

cooling effect does not require non-trivial topology.

4 Reservoir engineering under finite temperature

Reservoir engineering [2] is one of the most popular approaches to generating non-Hermitian inter-

actions. Here an engineered auxiliary reservoir is used to generate non-Hermitian interactions between

two modes labelled by 1 and 2, respectively. The engineered reservoir needs to coherently absorb

quanta from (or emit quanta to) the two modes. In the original work [2], the authors considered a

zero-temperature reservoir, whose thermal occupation is thus zero. In this case, the authors only in-

cluded one jump operator z = d1 + d2, which describes the interaction between the reservoir and the

two-modes. Here di is the annihilation operator of the i-th mode (see texts around Eq. (8) in Ref. [2]).

Here we generalize the discussions in Ref. [2], and consider a reservoir with finite temperature and

thus finite occupation number n0. In this case, we need to consider two jump operators

z1 =
√
n0 + 1(d1 + d2)

z2 =
√
n0(d

†
1 + d†2)

(S15)

Note that the zero-temperature case considered in Ref. [2] corresponds to n0 = 0. Then, we still consider

the master equation
∂

∂t
ρ = −i[Hhop, ρ] + Γ

∑
i=1,2

L(zi)ρ+ κ
∑
j=1,2

L(dj)ρ (S16)

Here Hhop = Jd†1d2 + h.c. is the coherent interaction between modes 1 and 2, with J the coupling

strength. h.c. stands for Hermitian conjugate. The second term in Eq. (S16) is the interaction with the

engineered reservoir at rate Γ, while the last term describes the interaction between the two modes and

their input-out ports at rate κ. More detailed discussions can be found in Ref. [2].

After some tedious but straightforward derivations, one will find that

∂

∂t
⟨d1⟩ ≡

∂

∂t
Tr {ρd1} = −κ+ Γ

2
⟨d1⟩ −

[
iJ +

Γ

2

]
⟨d2⟩,

∂

∂t
⟨d2⟩ ≡

∂

∂t
Tr {ρd2} = −κ+ Γ

2
⟨d2⟩ −

[
iJ∗ +

Γ

2

]
⟨d1⟩.

(S17)

This is exactly the same as Eq. (10) in Ref. [2], which is the key result there. In other words, the

8



non-Hermitian interaction generated by reservoir engineering remains the same, regardless of whether

the reservoir has finite thermal occupation n0.

The fluctuation of the thermal occupation can be included by using a time-dependent n0(t) =

⟨n0⟩ + δn0(t), where ⟨n0⟩ is the average occupation, while δn0(t) is a fluctuation (noise). Even in this

case, one can still obtain Eq. (S17), where n0(t) does not appear. Indeed, the noise term δn0(t) could

influence the dynamics as second-order or even higher-order perturbations, but these effects should be

quite weak1. A systematic analysis on these effects is beyond the scope of the current work and will be

left for future studies.
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